| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.720 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.238 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }&=b c \,x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
{y^{\prime }}^{2}-a x y^{\prime }+a y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
4.230 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c&=b y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 a \,x^{3} y^{\prime }+4 a \,x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime } y+{y^{\prime }}^{2}&=x \left (x +y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| \begin{align*}
{y^{\prime }}^{2}-y^{\prime } y+{\mathrm e}^{x}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.480 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } y-2 x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
24.875 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (y-1\right )&=0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✗ | 1.296 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.239 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
3.509 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
14.354 |
|
| \begin{align*}
{y^{\prime }}^{2}+a y y^{\prime }-a x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.991 |
|
| \begin{align*}
{y^{\prime }}^{2}-a y y^{\prime }-a x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
28.836 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
{y^{\prime }}^{2}-x y^{\prime } y+y^{2} \ln \left (a y\right )&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.418 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
13.945 |
|
| \begin{align*}
{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+y^{4} x^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.316 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.401 |
|
| \begin{align*}
{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
97.200 |
|
| \begin{align*}
{y^{\prime }}^{2}&={\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.487 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _dAlembert] | ✓ | ✓ | ✓ | ✗ | 1.177 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.764 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.592 |
|
| \begin{align*}
3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.444 |
|
| \begin{align*}
3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.781 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.547 |
|
| \begin{align*}
4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.924 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.738 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.719 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.677 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=\left (a -x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.300 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.191 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.008 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime }&=y \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.782 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime }-y&=0 \\
\end{align*} | [_rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 1.767 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.761 |
|
| \begin{align*}
x {y^{\prime }}^{2}+4 y^{\prime }-2 y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.932 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.286 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
20.323 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.688 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.979 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
9.444 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
8.211 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.779 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.158 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.269 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.289 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.315 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.266 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (a +b x -y\right ) y^{\prime }-b y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.336 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.014 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } y-x&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 22.683 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
0.931 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.981 |
|
| \begin{align*}
x {y^{\prime }}^{2}-3 y^{\prime } y+9 x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.983 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
x {y^{\prime }}^{2}-a y y^{\prime }+b&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
29.484 |
|
| \begin{align*}
x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.563 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.144 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.309 |
|
| \begin{align*}
\left (a -x \right ) {y^{\prime }}^{2}+y^{\prime } y-b&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.298 |
|
| \begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.382 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| \begin{align*}
\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.306 |
|
| \begin{align*}
\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.688 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.924 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.967 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.410 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| \begin{align*}
4 \left (-x +2\right ) {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.148 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.442 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=\left (x -y\right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.100 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.523 |
|