| # | ID | ODE | CAS classification |
Maple |
Mma |
Sympy |
time(sec) |
| \(1\) |
\begin{align*}
x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\
x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.027 |
|
| \(2\) |
\begin{align*}
x^{\prime \prime }+2 x-2 y^{\prime }&=0 \\
3 x^{\prime }+y^{\prime \prime }-8 y&=240 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.048 |
|
| \(3\) |
\begin{align*}
y^{\prime \prime }+z+y&=0 \\
y^{\prime }+z^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.019 |
|
| \(4\) |
\begin{align*}
z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\
y^{\prime \prime }-z&=\sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= -1 \\
z^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.020 |
|
| \(5\) |
\begin{align*}
w^{\prime \prime }-y+2 z&=3 \,{\mathrm e}^{-t} \\
-2 w^{\prime }+2 y^{\prime }+z&=0 \\
2 w^{\prime }-2 y+z^{\prime }+2 z^{\prime \prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 2 \\
z \left (0\right ) &= 2 \\
z^{\prime }\left (0\right ) &= -2 \\
w \left (0\right ) &= 1 \\
w^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✗ |
0.030 |
|
| \(6\) |
\begin{align*}
u^{\prime \prime }-2 v&=2 \\
u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\
\end{align*} With initial conditions \begin{align*}
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 2 \\
v \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.019 |
|
| \(7\) |
\begin{align*}
w^{\prime \prime }-2 z&=0 \\
w^{\prime }+y^{\prime }-z&=2 t \\
w^{\prime }-2 y+z^{\prime \prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
w \left (0\right ) &= 0 \\
w^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
z^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.026 |
|
| \(8\) |
\begin{align*}
w^{\prime \prime }+y+z&=-1 \\
w+y^{\prime \prime }-z&=0 \\
-w-y^{\prime }+z^{\prime \prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
w \left (0\right ) &= 0 \\
w^{\prime }\left (0\right ) &= 1 \\
z \left (0\right ) &= -1 \\
z^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✗ |
✗ |
0.026 |
|
| \(9\) |
\begin{align*}
x^{\prime \prime }&=-2 y \\
y^{\prime }&=y-x^{\prime } \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 10 \\
y \left (0\right ) &= 5 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.018 |
|
| \(10\) |
\begin{align*}
y^{\prime \prime }&=x-2 \\
x^{\prime \prime }&=2+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.016 |
|
| \(11\) |
\begin{align*}
x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\
x+y^{\prime \prime }&=2 \\
\end{align*} With initial conditions \begin{align*}
x \left (\pi \right ) &= 2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.016 |
|
| \(12\) |
\begin{align*}
x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\
y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.017 |
|
| \(13\) |
\begin{align*}
x^{\prime \prime }+y^{\prime \prime }&=t \\
x^{\prime \prime }-y^{\prime \prime }&=3 t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.025 |
|
| \(14\) |
\begin{align*}
y_{1}^{\prime }-2 y_{1}&=-y_{2} \\
y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= -1 \\
y_{2}^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.030 |
|
| \(15\) |
\begin{align*}
y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\
y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
y_{2}^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
0.030 |
|
| \(16\) |
\begin{align*}
y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\
y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 10 \\
y_{1}^{\prime }\left (0\right ) &= 0 \\
y_{2} \left (0\right ) &= 10 \\
y_{2}^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✗ |
0.030 |
|
| \(17\) |
\begin{align*}
t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y&=0 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✗ |
0.037 |
|