2.1.6 Problems not solved. Laplace solution only

Table 2.11: Problems not solved. Laplace solution only. [17]

#

ID

ODE

CAS classification

Maple

Mma

Sympy

time(sec)

\(1\)

4555

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.027

\(2\)

4557

\begin{align*} x^{\prime \prime }+2 x-2 y^{\prime }&=0 \\ 3 x^{\prime }+y^{\prime \prime }-8 y&=240 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.048

\(3\)

22257

\begin{align*} y^{\prime \prime }+z+y&=0 \\ y^{\prime }+z^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.019

\(4\)

22258

\begin{align*} z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\ y^{\prime \prime }-z&=\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.020

\(5\)

22259

\begin{align*} w^{\prime \prime }-y+2 z&=3 \,{\mathrm e}^{-t} \\ -2 w^{\prime }+2 y^{\prime }+z&=0 \\ 2 w^{\prime }-2 y+z^{\prime }+2 z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 2 \\ z \left (0\right ) &= 2 \\ z^{\prime }\left (0\right ) &= -2 \\ w \left (0\right ) &= 1 \\ w^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.030

\(6\)

22264

\begin{align*} u^{\prime \prime }-2 v&=2 \\ u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\ \end{align*}
With initial conditions
\begin{align*} u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 2 \\ v \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.019

\(7\)

22265

\begin{align*} w^{\prime \prime }-2 z&=0 \\ w^{\prime }+y^{\prime }-z&=2 t \\ w^{\prime }-2 y+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.026

\(8\)

22266

\begin{align*} w^{\prime \prime }+y+z&=-1 \\ w+y^{\prime \prime }-z&=0 \\ -w-y^{\prime }+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 1 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.026

\(9\)

22906

\begin{align*} x^{\prime \prime }&=-2 y \\ y^{\prime }&=y-x^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 10 \\ y \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.018

\(10\)

22907

\begin{align*} y^{\prime \prime }&=x-2 \\ x^{\prime \prime }&=2+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.016

\(11\)

22908

\begin{align*} x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\ x+y^{\prime \prime }&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (\pi \right ) &= 2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

system_of_ODEs

0.016

\(12\)

22911

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.017

\(13\)

23093

\begin{align*} x^{\prime \prime }+y^{\prime \prime }&=t \\ x^{\prime \prime }-y^{\prime \prime }&=3 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.025

\(14\)

25176

\begin{align*} y_{1}^{\prime }-2 y_{1}&=-y_{2} \\ y_{2}^{\prime \prime }-y_{2}^{\prime }+y_{2}&=y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= -1 \\ y_{2}^{\prime }\left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.030

\(15\)

25177

\begin{align*} y_{1}^{\prime }+2 y_{1}&=5 y_{2} \\ y_{2}^{\prime \prime }-2 y_{2}^{\prime }+5 y_{2}&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.030

\(16\)

25178

\begin{align*} y_{1}^{\prime \prime }+2 y_{1}&=-3 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }-9 y_{2}&=6 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 10 \\ y_{1}^{\prime }\left (0\right ) &= 0 \\ y_{2} \left (0\right ) &= 10 \\ y_{2}^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.030

\(17\)

25247

\begin{align*} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y&=0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _exact, _linear, _homogeneous]]

0.037