2.7.2 higher order missing y

Table 2.1169: higher order missing y [57]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

4413

\begin{align*} y^{\prime \prime \prime }&=2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.497

6704

\begin{align*} \left (-a^{2}+1\right ) x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.155

6712

\begin{align*} \left (-x^{3}+3 x^{2}-6 x +6\right ) y^{\prime \prime }+x \left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.268

6719

\begin{align*} 10 x^{2} y^{\prime }+8 x^{3} y^{\prime \prime }+x^{2} \left (x^{2}+1\right ) y^{\prime \prime \prime }&=-1+3 x^{2}+2 \ln \left (x \right ) x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.543

6721

\begin{align*} 4 x^{2} y^{\prime }-4 x^{3} y^{\prime \prime }+4 x^{4} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.264

6790

\begin{align*} y^{\prime \prime \prime }&=y^{\prime } \left (1+y^{\prime }\right ) \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.651

6801

\begin{align*} {y^{\prime }}^{2}+y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

3.290

6803

\begin{align*} 2 y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.434

6804

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=3 y^{\prime } {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.573

6805

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }&=\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

9.012

6806

\begin{align*} {y^{\prime }}^{3} y^{\prime \prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.715

6807

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.503

6808

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6.018

6809

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.036

6810

\begin{align*} 1-{y^{\prime \prime }}^{2}+2 x y^{\prime \prime } y^{\prime \prime \prime }+\left (-x^{2}+1\right ) {y^{\prime \prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.802

6811

\begin{align*} \sqrt {1+{y^{\prime \prime }}^{2}}\, \left (1-y^{\prime \prime \prime }\right )&=y^{\prime \prime } y^{\prime \prime \prime } \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

5.637

6812

\begin{align*} 3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=5 {y^{\prime \prime \prime }}^{2} \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.955

8055

\begin{align*} \left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 y^{\prime } x&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.286

8801

\begin{align*} 3 {y^{\prime \prime }}^{2}-y^{\prime \prime \prime } y^{\prime }-y^{\prime \prime } {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.773

8807

\begin{align*} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t}&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.332

8828

\begin{align*} a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.655

12741

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.202

12761

\begin{align*} \left (-a^{2}+1\right ) x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.156

12771

\begin{align*} 4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.285

13041

\begin{align*} y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right )&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.941

13051

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.145

13052

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (a +3 y^{\prime }\right ) {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

21.544

13053

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {1+b^{2} {y^{\prime \prime }}^{2}}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

8.852

13055

\begin{align*} 3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

1.556

14157

\begin{align*} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2}&={y^{\prime \prime \prime }}^{2}+1 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

0.765

15078

\begin{align*} {y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2}&=1 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.931

15106

\begin{align*} 6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2}&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.572

15331

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.246

15408

\begin{align*} y^{\prime \prime \prime }&={y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.457

15409

\begin{align*} y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.799

15654

\begin{align*} x y^{\prime \prime \prime }+y^{\prime } x&=4 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ y^{\prime \prime }\left (1\right ) &= -1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.759

16399

\begin{align*} y^{\prime \prime \prime }&=2 \sqrt {y^{\prime \prime }} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.661

17609

\begin{align*} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.736

17610

\begin{align*} \left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime }&=-2-t \\ \end{align*}

[[_3rd_order, _missing_y]]

0.768

18100

\begin{align*} y^{\prime \prime \prime }&=\sqrt {1-{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1.043

18111

\begin{align*} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.362

19142

\begin{align*} {y^{\prime \prime \prime }}^{2}+x^{2}&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

1651.873

19144

\begin{align*} a^{3} y^{\prime \prime \prime } y^{\prime \prime }&=\sqrt {1+c^{2} {y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

29.674

19145

\begin{align*} y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

6.599

19147

\begin{align*} y^{\prime \prime }-x y^{\prime \prime \prime }+{y^{\prime \prime \prime }}^{3}&=0 \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

1.681

19160

\begin{align*} 5 {y^{\prime \prime \prime }}^{2}-3 y^{\prime \prime } y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

4.155

19775

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.922

20133

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.874

20144

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.455

20540

\begin{align*} y^{\prime \prime \prime } \csc \left (x \right )^{2}&=1 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.241

20571

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }&=2 \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.954

20600

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1.858

21949

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime } x&={\mathrm e}^{x}+1 \\ \end{align*}

[[_3rd_order, _missing_y]]

1.880

21955

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

1.104

22495

\begin{align*} {y^{\prime \prime \prime }}^{2}&={y^{\prime \prime }}^{3} \\ \end{align*}

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.671

22579

\begin{align*} x^{4} y^{\prime \prime \prime }+1&=0 \\ \end{align*}

[[_3rd_order, _quadrature]]

0.105

23231

\begin{align*} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x}&=0 \\ \end{align*}

[[_high_order, _missing_y]]

0.657