2.5.8 second order linear exact ode

Table 2.1127: second order linear exact ode [623]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

11

\begin{align*} x^{\prime \prime }&=50 \\ x \left (0\right ) &= 20 \\ x^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.829

12

\begin{align*} x^{\prime \prime }&=-20 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -15 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.741

13

\begin{align*} x^{\prime \prime }&=3 t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.813

14

\begin{align*} x^{\prime \prime }&=2 t +1 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= -7 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.832

15

\begin{align*} x^{\prime \prime }&=4 \left (t +3\right )^{2} \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.827

16

\begin{align*} x^{\prime \prime }&=\frac {1}{\sqrt {t +4}} \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.925

17

\begin{align*} x^{\prime \prime }&=\frac {1}{\left (t +1\right )^{3}} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.909

18

\begin{align*} x^{\prime \prime }&=50 \sin \left (5 t \right ) \\ x \left (0\right ) &= 8 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.953

147

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.634

150

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.700

221

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.883

222

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.901

236

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.700

237

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.723

244

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

272

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.658

376

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.506

813

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.874

814

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.907

825

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.694

826

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

833

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.096

846

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

902

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.708

1253

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.819

1260

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.996

1294

\begin{align*} t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.262

1296

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.865

1330

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.980

1345

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.688

1352

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.598

1741

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ y \left (0\right ) &= -5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.872

1745

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.193

1753

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.582

1810

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.905

1827

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.558

1836

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.463

1838

\begin{align*} \left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.322

2361

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.174

2362

\begin{align*} y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.736

2399

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.023

2432

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.845

2434

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.016

2542

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.078

2543

\begin{align*} y^{\prime \prime }+t y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.668

2580

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.949

2590

\begin{align*} t^{2} y^{\prime \prime }-2 y&=t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.648

2606

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=1+t^{2}+{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

2628

\begin{align*} 2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.772

2630

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.894

3088

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.796

3140

\begin{align*} 2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.811

3216

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{3} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.812

3217

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.589

3219

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.851

3227

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=1-x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.772

3243

\begin{align*} y^{\prime \prime }&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.019

3248

\begin{align*} y^{\prime \prime } x&=x^{2}+1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.793

3249

\begin{align*} \left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

1.036

3250

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.888

3252

\begin{align*} y^{\prime \prime } x +x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.975

3271

\begin{align*} y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\ y \left (0\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.006

3283

\begin{align*} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }&={\mathrm e}^{x} y^{\prime } \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

2.354

3493

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.982

3564

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.101

3574

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.452

3583

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.573

3584

\begin{align*} y^{\prime \prime }&=x^{n} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.640

3586

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.842

3588

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.817

3698

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.642

3707

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.934

3772

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.705

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.754

4123

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.721

4126

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.545

4425

\begin{align*} y^{\prime \prime } x&=x +y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

4483

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.869

4507

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.895

5710

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.551

5711

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.803

5712

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.023

5713

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.737

5714

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.948

5816

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.714

5840

\begin{align*} a k \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.565

5845

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.743

5862

\begin{align*} -y \cos \left (x \right )-\sin \left (x \right ) y^{\prime }+y^{\prime \prime }&=a -x +x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.727

5888

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.726

5889

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x^{n} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

5895

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.592

5896

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.572

5900

\begin{align*} a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.839

5927

\begin{align*} 2 y x -\left (-x^{2}+4\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.878

5937

\begin{align*} -2 y^{\prime }+\left (a -x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.644

5939

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.664

5944

\begin{align*} -y-\left (2+x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.121

5950

\begin{align*} c y^{\prime }+\left (b x +a \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.964

5954

\begin{align*} x^{2} y^{\prime \prime }&=2 y \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.770

5970

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.229

5972

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=a \,x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.790

5978

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.838

5989

\begin{align*} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.951

6001

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.017

6002

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.408

6003

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=a -x +x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.876

6006

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.833

6007

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=\ln \left (x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.333

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.295

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.970

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.109

6051

\begin{align*} -2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.542

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.663

6059

\begin{align*} 3 y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.596

6066

\begin{align*} -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.720

6067

\begin{align*} a -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.146

6077

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.874

6080

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.589

6086

\begin{align*} -\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.273

6093

\begin{align*} 2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.536

6096

\begin{align*} 2 y+3 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.598

6097

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.598

6098

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=x \left (3 x^{3}+1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.711

6099

\begin{align*} 2 y-a y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.095

6101

\begin{align*} y-\left (x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.714

6107

\begin{align*} -y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.568

6108

\begin{align*} y+\left (3 x +2\right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.705

6109

\begin{align*} -2 y+\left (1-4 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.582

6110

\begin{align*} -2 y-2 \left (2 x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.624

6116

\begin{align*} -a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.743

6117

\begin{align*} -a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.536

6122

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.957

6123

\begin{align*} 2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.415

6130

\begin{align*} -3 y+\left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.676

6134

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.845

6140

\begin{align*} -4 y+y^{\prime }+2 x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.616

6175

\begin{align*} -12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.709

6176

\begin{align*} -12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=1+3 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.835

6177

\begin{align*} -9 y-3 \left (1-3 x \right ) y^{\prime }+\left (1-3 x \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.569

6182

\begin{align*} -2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.105

6184

\begin{align*} -2 b y+2 a y^{\prime }+x \left (b x +a \right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.829

6199

\begin{align*} 6 y x +\left (-x^{3}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.661

6203

\begin{align*} 4 y x -\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.737

6205

\begin{align*} -2 y x -2 \left (-x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.539

6212

\begin{align*} -6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.800

6218

\begin{align*} 2 \left (x +1\right ) y+2 x \left (-x +2\right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.776

6220

\begin{align*} 2 \left (1+3 x \right ) y+2 x \left (3 x +2\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.840

6297

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.690

7040

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.849

7069

\begin{align*} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.846

7082

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7083

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.776

7084

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.167

7115

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.086

7117

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.355

7118

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.369

7123

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.803

7133

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.775

7139

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.894

7261

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.859

7266

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.820

7275

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.923

7296

\begin{align*} 2 y^{\prime \prime }+y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.925

7306

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.230

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.816

7595

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.188

7685

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.887

7789

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.964

7815

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=-3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.129

7816

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.670

7988

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.179

8029

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.394

8030

\begin{align*} -12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=6 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.839

8048

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {2}{x^{3}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.750

8049

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.931

8185

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.779

8202

\begin{align*} y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.829

8262

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.608

8263

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.600

8754

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.471

8759

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.632

8765

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=2 x \,{\mathrm e}^{x}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.164

8767

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.007

8769

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y&=x +\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.624

8856

\begin{align*} y^{\prime \prime }&=2+x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.016

8864

\begin{align*} y^{\prime \prime }&=1+3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.039

8890

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.496

8949

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.359

8950

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.138

8951

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.275

9034

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.819

9039

\begin{align*} -2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.760

9186

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.838

9211

\begin{align*} y^{\prime \prime } x -3 y^{\prime }&=5 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.861

9252

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.839

9255

\begin{align*} y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.872

9328

\begin{align*} y^{\prime \prime }&=\tan \left (x \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.684

9329

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\ \end{align*}

[[_2nd_order, _missing_y]]

2.770

9336

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {2}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.609

9341

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {x -1}{x^{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.956

9498

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.739

9500

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.878

9637

\begin{align*} t y^{\prime \prime }-y^{\prime }&=2 t^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.050

9770

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.202

9771

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.277

10033

\begin{align*} t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.115

10034

\begin{align*} \left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime }&=0 \\ y \left (3\right ) &= 2 \pi \\ y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.050

10036

\begin{align*} t y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.845

10040

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.476

10041

\begin{align*} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.888

10042

\begin{align*} y^{\prime \prime }&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.879

10043

\begin{align*} y^{\prime \prime }&=k \\ \end{align*}

[[_2nd_order, _quadrature]]

0.952

10046

\begin{align*} y^{\prime \prime }&=4 \sin \left (x \right )-4 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.100

10360

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.556

10363

\begin{align*} a y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.612

10366

\begin{align*} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.668

10368

\begin{align*} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.712

10371

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.692

10374

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.780

10377

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.734

10390

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.781

10391

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.733

10392

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.772

10393

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.790

10394

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{3}+x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.843

10395

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.855

10396

\begin{align*} y^{\prime \prime }+y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.805

12281

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.470

12314

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.480

12359

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.705

12375

\begin{align*} y^{\prime \prime } x -y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.521

12425

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.816

12431

\begin{align*} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.254

12434

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.332

12441

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.279

12447

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.414

12449

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-\ln \left (x \right ) x^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.574

12494

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.690

12495

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

4.522

12501

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.579

12502

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.895

12510

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.694

12517

\begin{align*} y+\left (3 x +2\right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.548

12519

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.697

12527

\begin{align*} x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13.464

12530

\begin{align*} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.503

12531

\begin{align*} 2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.770

12548

\begin{align*} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.784

12550

\begin{align*} \left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.117

12562

\begin{align*} \left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.697

12564

\begin{align*} \left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.664

12575

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.487

12582

\begin{align*} -6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.691

12692

\begin{align*} y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.624

13686

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.939

13717

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.737

13730

\begin{align*} y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.032

13743

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.165

13748

\begin{align*} y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.177

13755

\begin{align*} y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+x^{n -1} a n y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.832

13766

\begin{align*} \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.462

13770

\begin{align*} \left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.896

13824

\begin{align*} \left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.933

13836

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

16.487

13850

\begin{align*} x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.849

13910

\begin{align*} \left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.259

13956

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.967

13961

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.645

14114

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.852

14118

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.430

14159

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.693

14168

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.214

14169

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.410

14183

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2+4 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.632

14190

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.572

14205

\begin{align*} x^{\prime \prime }&=-3 \sqrt {t} \\ x \left (1\right ) &= 4 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.294

14210

\begin{align*} x^{\prime }+t x^{\prime \prime }&=1 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.403

14263

\begin{align*} x^{\prime \prime }+x^{\prime }&=3 t \\ \end{align*}

[[_2nd_order, _missing_y]]

0.760

14280

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.765

14284

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.831

14308

\begin{align*} x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.833

14316

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=4 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.998

14323

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.945

14333

\begin{align*} t^{2} x^{\prime \prime }-2 x&=t^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.649

14416

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

14695

\begin{align*} \left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (2 x +1\right )^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.431

14713

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.301

14719

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.688

14720

\begin{align*} x^{2} y^{\prime \prime }-2 y&=4 x -8 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.956

14725

\begin{align*} \left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.691

14921

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=0 \\ y \left (0\right ) &= 13 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.947

14933

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.997

14960

\begin{align*} t^{2} x^{\prime \prime }-2 x&=t^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.630

14961

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.759

14966

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\ x \left (1\right ) &= 1 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.102

14968

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.446

14971

\begin{align*} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z&=0 \\ z \left (1\right ) &= 2 \\ z^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.468

15160

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.495

15161

\begin{align*} y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.629

15162

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.013

15163

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.979

15166

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.987

15168

\begin{align*} y^{\prime \prime } x +x^{2} y^{\prime }+2 y x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.602

15169

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.617

15170

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

24.576

15171

\begin{align*} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x}&=1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.721

15254

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=t^{7} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.559

15403

\begin{align*} -y^{\prime }+y^{\prime \prime } x&={\mathrm e}^{x} x^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.163

15434

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2-6 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.862

15483

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.227

15485

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.865

15487

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.464

15501

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.161

16100

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.302

16101

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.336

16157

\begin{align*} y^{\prime \prime }&=\frac {x +1}{x -1} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.980

16171

\begin{align*} y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.924

16172

\begin{align*} y^{\prime \prime }-3&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.891

16180

\begin{align*} y^{\prime \prime } x +2&=\sqrt {x} \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= 6 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.134

16382

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.928

16383

\begin{align*} y^{\prime \prime } x&=2 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.687

16384

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.661

16385

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.898

16387

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.635

16394

\begin{align*} y^{\prime \prime }&=2 y^{\prime }-6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.897

16396

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

16404

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.671

16410

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.860

16414

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

16416

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\ y \left (1\right ) &= 8 \\ y^{\prime }\left (1\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.204

16417

\begin{align*} y^{\prime \prime } x&=2 y^{\prime } \\ y \left (-1\right ) &= 4 \\ y^{\prime }\left (-1\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.887

16418

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.921

16419

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.216

16422

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=6 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.054

16485

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.851

16491

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.779

16553

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.462

16564

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.158

16608

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.843

16612

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.088

16623

\begin{align*} y^{\prime \prime }&=6 \,{\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.056

16628

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=20 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.891

16629

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.874

16680

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=85 \cos \left (2 \ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.092

16681

\begin{align*} x^{2} y^{\prime \prime }-2 y&=15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.189

16683

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=\frac {10}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.797

16692

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.058

16696

\begin{align*} x^{2} y^{\prime \prime }-2 y&=\frac {1}{x -2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.700

16698

\begin{align*} y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.184

16700

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=\frac {10}{x} \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -15 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.543

16714

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

16734

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.946

16736

\begin{align*} y^{\prime \prime } x&=3 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.678

16737

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.756

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.302

16756

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.642

16757

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.585

16967

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.818

16996

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.954

17174

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.850

17362

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.562

17379

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.787

17381

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.145

17394

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.151

17395

\begin{align*} 3 y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.316

17429

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3-4 t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.148

17434

\begin{align*} y^{\prime \prime }&=3 t^{4}-2 t \\ \end{align*}

[[_2nd_order, _quadrature]]

1.069

17444

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=52 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.255

17452

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.307

17453

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.230

17454

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.287

17455

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.133

17456

\begin{align*} y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.508

17457

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=18 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.388

17465

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.467

17466

\begin{align*} y^{\prime \prime }-y^{\prime }&=-3 t -4 \,{\mathrm e}^{2 t} t^{2} \\ y \left (0\right ) &= -{\frac {7}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.539

17467

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=2 t^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.304

17468

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.585

17469

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.914

17482

\begin{align*} y^{\prime \prime }+16 y^{\prime }&=t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.126

17527

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=\ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.287

17529

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=2 \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.614

17651

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.859

17652

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.300

17656

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.733

17669

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.717

17749

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.153

17750

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.246

17753

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.537

17783

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.217

18082

\begin{align*} \left (x -1\right ) y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.589

18091

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.092

18092

\begin{align*} y^{\prime \prime }&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.892

18093

\begin{align*} y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.658

18094

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.625

18096

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.873

18108

\begin{align*} y^{\prime \prime }+y^{\prime }+2&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.970

18147

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.901

18148

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.921

18149

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.846

18150

\begin{align*} y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.864

18153

\begin{align*} 4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.043

18154

\begin{align*} y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

18184

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=-2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.937

18192

\begin{align*} y^{\prime \prime }+8 y^{\prime }&=8 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.917

18196

\begin{align*} 7 y^{\prime \prime }-y^{\prime }&=14 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.882

18197

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=3 x \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.965

18206

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.063

18207

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.281

18209

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.215

18224

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=x +{\mathrm e}^{-4 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.005

18230

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=2 \cos \left (4 x \right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.274

18232

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=18 x -10 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

18239

\begin{align*} y^{\prime \prime }+y^{\prime }&=\cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.420

18242

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.385

18249

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.335

18255

\begin{align*} y^{\prime \prime }+2 y^{\prime }+1&=3 \sin \left (2 x \right )+\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.727

18267

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.065

18274

\begin{align*} y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\ y \left (0\right ) &= -4 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.661

18290

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.221

18291

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.967

18293

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.638

18301

\begin{align*} x^{2} y^{\prime \prime }-2 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.019

18302

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.497

18304

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.244

18305

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.187

18322

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.164

18328

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.504

18337

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {1}{x^{2}+1} \\ y \left (\infty \right ) &= \frac {\pi ^{2}}{8} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.973

18361

\begin{align*} y^{\prime \prime }+\alpha y^{\prime }&=0 \\ y \left (0\right ) &= {\mathrm e}^{\alpha } \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.238

18368

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.683

18738

\begin{align*} t^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.393

18768

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.640

18790

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.809

18801

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.989

18803

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.726

18804

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.398

18808

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.003

18818

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.059

18836

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.553

18845

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.327

18877

\begin{align*} t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.610

18880

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.287

19065

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.660

19200

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.175

19364

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.628

19420

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.462

19421

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.427

19424

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=6 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.318

19426

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.755

19427

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.473

19430

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.378

19431

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.539

19437

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 8 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.999

19440

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.308

19467

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.735

19501

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.761

19504

\begin{align*} y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.554

19585

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.790

19691

\begin{align*} x^{\prime \prime }+3 x^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.476

19765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.701

19847

\begin{align*} e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.859

19848

\begin{align*} e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.750

19849

\begin{align*} e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.721

19850

\begin{align*} e y^{\prime \prime }&=-P \left (L -x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

2.027

19851

\begin{align*} e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.576

19858

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.771

19860

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.579

19861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.581

19862

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.917

19863

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.498

19864

\begin{align*} \left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.227

19867

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.811

19874

\begin{align*} y^{\prime \prime } x +3 y^{\prime }&=3 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.672

19875

\begin{align*} x&=y^{\prime \prime }+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

1.661

19893

\begin{align*} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

3.728

20096

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.124

20099

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.344

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.648

20109

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.902

20113

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.388

20118

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.499

20119

\begin{align*} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.421

20125

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.833

20143

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.537

20160

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.557

20162

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.717

20165

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.697

20168

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.644

20172

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.675

20175

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.984

20189

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.510

20495

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.601

20498

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.179

20499

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.143

20501

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.975

20502

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.880

20516

\begin{align*} y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.795

20517

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right )&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.724

20518

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

20521

\begin{align*} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.471

20522

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.650

20523

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.612

20524

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.581

20525

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.784

20527

\begin{align*} \left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.905

20528

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.724

20535

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.021

20536

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.867

20539

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.031

20551

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.851

20560

\begin{align*} y^{\prime \prime } x +y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.903

20569

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

1.106

20595

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.619

20605

\begin{align*} y^{\prime \prime } x +\left (1-x \right ) y^{\prime }&={\mathrm e}^{x}+y \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.617

20658

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.885

20664

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.331

20747

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.880

20753

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.989

20771

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.343

20772

\begin{align*} y^{\prime \prime }&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.599

20778

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.952

20803

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.855

20841

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.088

20852

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

20864

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.637

20868

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=x^{2}+x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.957

21002

\begin{align*} z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.048

21119

\begin{align*} x^{\prime \prime }+p x^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.922

21144

\begin{align*} x^{\prime \prime }-x^{\prime }&=t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.126

21169

\begin{align*} t^{2} x^{\prime \prime }-2 x&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.654

21171

\begin{align*} t^{2} x^{\prime \prime }-t x^{\prime }-3 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.835

21484

\begin{align*} x^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.289

21515

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.577

21559

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.268

21567

\begin{align*} y^{\prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.504

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.158

21885

\begin{align*} y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.545

21934

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.680

21936

\begin{align*} y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.806

21964

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.513

22094

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.685

22100

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.530

22133

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.727

22306

\begin{align*} x^{\prime \prime }&=t^{2}-4 t +8 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.869

22308

\begin{align*} y^{\prime \prime }&=12 x \left (4-x \right ) \\ y \left (0\right ) &= 7 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.659

22310

\begin{align*} y^{\prime \prime }&=1-\cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.086

22311

\begin{align*} y^{\prime \prime }&=\sqrt {2 x +1} \\ y \left (0\right ) &= 5 \\ y \left (4\right ) &= -3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.837

22459

\begin{align*} y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.877

22477

\begin{align*} y^{\prime \prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.112

22481

\begin{align*} i^{\prime \prime }&=t^{2}+1 \\ i \left (0\right ) &= 2 \\ i^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.106

22542

\begin{align*} y^{\prime \prime }&=y^{\prime }+2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.082

22574

\begin{align*} y^{\prime \prime } x +y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.722

22700

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+3 x +{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.830

22705

\begin{align*} s^{\prime \prime }+s^{\prime }&=t +{\mathrm e}^{-t} \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

22743

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

22754

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.527

23050

\begin{align*} x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.782

23051

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.813

23052

\begin{align*} z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.927

23053

\begin{align*} s^{\prime \prime }&=5 t^{2}-7 t \\ s \left (0\right ) &= 0 \\ s \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.738

23108

\begin{align*} m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.865

23226

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.955

23230

\begin{align*} y^{\prime \prime } x +y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.848

23261

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.816

23262

\begin{align*} y^{\prime \prime }&=3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.780

23279

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.706

23282

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.678

23284

\begin{align*} y^{\prime \prime } x +4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.624

23296

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.710

23374

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.836

23396

\begin{align*} y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.171

23466

\begin{align*} 3 x^{2} y^{\prime \prime }-2 y^{\prime } x -8 y&=3 x +5 \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.316

23467

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.865

23470

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

23501

\begin{align*} y^{\prime \prime }&=3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.602

23540

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.292

23550

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ y \left (\frac {1}{4}\right ) &= 0 \\ y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.664

23763

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.800

23764

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.778

23920

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.420

23921

\begin{align*} y^{\prime \prime } x&=x^{2}+1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.306

23967

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.236

23984

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.614

24062

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +{\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.928

24411

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.091

24535

\begin{align*} y^{\prime \prime }+y^{\prime }&=-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.793

24563

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=-18 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.908

24571

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +1 \\ y \left (0\right ) &= 1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.665

24575

\begin{align*} y^{\prime \prime }+y^{\prime }&=-2 x +2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.659

24582

\begin{align*} y^{\prime \prime }-y^{\prime }&=42 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.725

24648

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.671

24691

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.716

24717

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=2 x \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.701

24718

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.920

24875

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

24876

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.934

24926

\begin{align*} y^{\prime \prime }&=2 t +1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.677

24927

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.746

24934

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.062

25087

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.863

25094

\begin{align*} y^{\prime \prime }+2&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.913

25190

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.264

25191

\begin{align*} t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.384

25268

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.881

25274

\begin{align*} t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.937

25277

\begin{align*} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

11.580

25529

\begin{align*} y^{\prime \prime }&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.526

25530

\begin{align*} y^{\prime \prime }&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.599

25543

\begin{align*} y^{\prime \prime }&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.750

25544

\begin{align*} y^{\prime \prime }&=\operatorname {Direct}_{t} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.838

25584

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.752

25585

\begin{align*} y^{\prime \prime }&=4 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.639

25593

\begin{align*} y^{\prime \prime }+y^{\prime }&=t +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.757

25594

\begin{align*} y^{\prime \prime }+y^{\prime }&=t^{2}+1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.778

25618

\begin{align*} y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.798

25619

\begin{align*} y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.782

25622

\begin{align*} y^{\prime \prime }&=t \\ \end{align*}

[[_2nd_order, _quadrature]]

0.665

25623

\begin{align*} y^{\prime \prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.690

25681

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.701

25740

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.970

25741

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.969