| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| \begin{align*}
y^{\prime }&=f \left (a x +b y+c \right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.240 |
|
| \begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.120 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.374 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3+t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.342 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3+t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.388 |
|
| \begin{align*}
y&=x +3 \ln \left (y^{\prime }\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.746 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.784 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.221 |
|
| \begin{align*}
y^{\prime }&=a +b \cos \left (A x +B y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.465 |
|
| \begin{align*}
y^{\prime }&=a +b \sin \left (A x +B y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.149 |
|
| \begin{align*}
y^{\prime }&=f \left (a +b x +c y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.527 |
|
| \begin{align*}
y^{\prime }-\sin \left (x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.822 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.162 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.309 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )&=x +y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.807 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+3 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.507 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y-1\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.739 |
|
| \begin{align*}
y^{\prime }&=-4 \sin \left (x -y\right )-4 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
28.224 |
|
| \begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.369 |
|
| \begin{align*}
y^{\prime }&=10+{\mathrm e}^{x +y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.161 |
|
| \begin{align*}
y^{\prime }-\cos \left (b x +a y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.338 |
|
| \begin{align*}
y^{\prime }-f \left (a x +b y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{t +x} \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.367 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.997 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.000 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.534 |
|
| \begin{align*}
y^{\prime }&=\ln \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.248 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.143 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.641 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.516 |
|
| \begin{align*}
y^{\prime }&=\tan \left (6 x +3 y+1\right )-2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.962 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{4 x +3 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.205 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+10 t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.685 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 y+2 t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.338 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.352 |
|
| \begin{align*}
y^{\prime }-1&={\mathrm e}^{x +2 y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.729 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
24.696 |
|
| \begin{align*}
y^{\prime }&=\tan \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.357 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +3 y}+1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.720 |
|
| \begin{align*}
y^{\prime }&=\sin \left (t -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.305 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t +y\right ) \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✗ |
✓ |
✓ |
30.097 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 y+3 x} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.455 |
|