2.3.257 Problems 25601 to 25700

Table 2.1045: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

25601

19717

\begin{align*} 2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\ \end{align*}

110.378

25602

6211

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

110.484

25603

21822

\begin{align*} \left (y^{2}+x^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\ \end{align*}

111.341

25604

21928

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ y \left (1\right ) &= 1 \\ \end{align*}

112.069

25605

13548

\begin{align*} y^{\prime } y-y&=-\frac {3 x}{16}+\frac {A}{x^{{1}/{3}}}+\frac {B}{x^{{5}/{3}}} \\ \end{align*}

112.085

25606

20473

\begin{align*} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-y x&=0 \\ \end{align*}

112.175

25607

11619

\begin{align*} y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x&=0 \\ \end{align*}

112.513

25608

13539

\begin{align*} y^{\prime } y-y&=-\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

112.685

25609

13604

\begin{align*} y^{\prime } y-\left (\left (2 n -1\right ) x -a n \right ) x^{-1-n} y&=n \left (x -a \right ) x^{-2 n} \\ \end{align*}

113.552

25610

25492

\begin{align*} y^{\prime }&=t^{m} y^{n} \\ y \left (0\right ) &= 0 \\ \end{align*}

113.811

25611

11793

\begin{align*} \left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right )&=0 \\ \end{align*}

114.637

25612

13879

\begin{align*} x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y&=0 \\ \end{align*}

116.277

25613

6209

\begin{align*} 2 \left (1-b \right ) x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

117.124

25614

6113

\begin{align*} n \left (a +n \right ) y+\left (c -\left (a +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

118.099

25615

21464

\begin{align*} y^{\prime }&={\mathrm e}^{2 x}+\left (2+\frac {5 \,{\mathrm e}^{x}}{2}\right ) y+y^{2} \\ \end{align*}

118.375

25616

13545

\begin{align*} y^{\prime } y-y&=-\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \\ \end{align*}

118.556

25617

21807

\begin{align*} y^{\prime }&=\frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2} \\ \end{align*}

118.658

25618

13851

\begin{align*} x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y&=0 \\ \end{align*}

120.214

25619

13628

\begin{align*} \left (A x y+A k y+B \,x^{2}+B k x \right ) y^{\prime }&=c y^{2}+d x y+k \left (d -B \right ) y \\ \end{align*}

121.221

25620

6210

\begin{align*} c x y+\left (a -\left (a +1\right ) x^{2}\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

122.010

25621

11687

\begin{align*} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \\ \end{align*}

122.499

25622

21851

\begin{align*} 2 x -y+1+\left (x -2 y-1\right ) y^{\prime }&=0 \\ \end{align*}

123.100

25623

19802

\begin{align*} y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime }&=0 \\ \end{align*}

123.590

25624

12661

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

123.629

25625

12024

\begin{align*} y^{\prime }&=-\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \\ \end{align*}

123.855

25626

20004

\begin{align*} \left (-y+y^{\prime } x \right ) \left (y^{\prime } y+x \right )&=h^{2} y^{\prime } \\ \end{align*}

123.985

25627

13607

\begin{align*} y^{\prime } y&=\left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \\ \end{align*}

124.284

25628

12072

\begin{align*} y^{\prime }&=\frac {2 x \ln \left (\frac {1}{x -1}\right )-\coth \left (\frac {x +1}{x -1}\right )+\coth \left (\frac {x +1}{x -1}\right ) y^{2}-2 \coth \left (\frac {x +1}{x -1}\right ) x^{2} y+\coth \left (\frac {x +1}{x -1}\right ) x^{4}}{\ln \left (\frac {1}{x -1}\right )} \\ \end{align*}

124.306

25629

13446

\begin{align*} y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

124.488

25630

13220

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \,x^{n}+c \\ \end{align*}

124.744

25631

6207

\begin{align*} c x y+\left (b \,x^{2}+a \right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

125.175

25632

12581

\begin{align*} x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y&=0 \\ \end{align*}

125.212

25633

5250

\begin{align*} \left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2}&=0 \\ \end{align*}

125.619

25634

19365

\begin{align*} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

125.749

25635

12574

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y&=0 \\ \end{align*}

126.199

25636

13364

\begin{align*} x^{2} y^{\prime }&=y^{2} a^{2} x^{2}-y x +b^{2} \ln \left (x \right )^{n} \\ \end{align*}

127.203

25637

13507

\begin{align*} y^{\prime } y-y&=-\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\ \end{align*}

128.471

25638

17872

\begin{align*} y^{\prime }&=x +y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

128.487

25639

13304

\begin{align*} y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \\ \end{align*}

128.510

25640

13514

\begin{align*} y^{\prime } y-y&=-\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \\ \end{align*}

128.576

25641

12637

\begin{align*} y^{\prime \prime }&=\frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

129.267

25642

13840

\begin{align*} \left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y&=0 \\ \end{align*}

129.420

25643

10404

\begin{align*} y {y^{\prime \prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

129.444

25644

13855

\begin{align*} x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y&=0 \\ \end{align*}

129.488

25645

21462

\begin{align*} y^{\prime }&=-\frac {2+x}{x \left (x +1\right )^{2}}-\frac {\left (-x^{2}+x +2\right ) y}{x \left (x +1\right )}+\left (x +1\right ) y^{2} \\ \end{align*}

130.049

25646

11296

\begin{align*} y^{\prime \prime }&=-\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \\ \end{align*}

130.405

25647

13822

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y&=0 \\ \end{align*}

130.622

25648

11475

\begin{align*} x \left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right ) y^{2}-x^{2}&=0 \\ \end{align*}

131.004

25649

15330

\begin{align*} x y \left (1-{y^{\prime }}^{2}\right )&=\left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \\ \end{align*}

131.060

25650

13497

\begin{align*} y^{\prime } y-y&=A x +B \\ \end{align*}

131.145

25651

6081

\begin{align*} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

131.240

25652

19901

\begin{align*} y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\ \end{align*}

131.329

25653

21808

\begin{align*} 3 x^{2}+2 y x +4 y^{2}+\left (20 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

131.373

25654

20597

\begin{align*} \sin \left (y\right )^{3} y^{\prime \prime }&=\cos \left (y\right ) \\ \end{align*}

131.672

25655

7552

\begin{align*} 4 x y^{3}-9 y^{2}+4 x y^{2}+\left (3 y^{2} x^{2}-6 y x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

132.618

25656

12513

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

132.700

25657

10066

\begin{align*} y^{\prime }&=\frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \\ \end{align*}

132.826

25658

21768

\begin{align*} y&=2 x +y^{\prime }-\frac {{y^{\prime }}^{3}}{3} \\ \end{align*}

133.033

25659

19904

\begin{align*} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\ \end{align*}

133.328

25660

13434

\begin{align*} y^{\prime } x&=\lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \\ \end{align*}

133.343

25661

13408

\begin{align*} \left (a \cot \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \cot \left (\mu x \right ) y-d^{2}+c d \cot \left (\mu x \right ) \\ \end{align*}

133.615

25662

20813

\begin{align*} y^{\prime }&=\frac {\sqrt {1-y^{2}}}{x} \\ \end{align*}

134.348

25663

19818

\begin{align*} \left (5 x -2 y+7\right ) y^{\prime }&=x -3 y+2 \\ \end{align*}

134.660

25664

4581

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2}-2 x_{3}+{\mathrm e}^{t} \\ x_{2}^{\prime }&=x_{1}+x_{2} \\ x_{3}^{\prime }&=6 x_{1}-6 x_{2}+5 x_{3} \\ \end{align*}

135.430

25665

13517

\begin{align*} y^{\prime } y-y&=-\frac {2 x}{9}+\frac {A}{\sqrt {x}} \\ \end{align*}

136.128

25666

13479

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \tan \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

136.314

25667

6214

\begin{align*} \operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x \left (x^{2}+\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

136.758

25668

13841

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (k +x \right ) y&=0 \\ \end{align*}

136.796

25669

13821

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y&=0 \\ \end{align*}

137.399

25670

12626

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \\ \end{align*}

137.477

25671

13269

\begin{align*} x^{3} y^{\prime }&=a \,x^{3} y^{2}+x \left (b x +c \right ) y+x \alpha +\beta \\ \end{align*}

137.804

25672

13832

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y&=0 \\ \end{align*}

138.553

25673

12620

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \\ \end{align*}

138.705

25674

5655

\begin{align*} x^{4} {y^{\prime }}^{3}-x^{3} y {y^{\prime }}^{2}-x^{2} y^{2} y^{\prime }+x y^{3}&=1 \\ \end{align*}

138.777

25675

6263

\begin{align*} b^{2} y+x \left (a^{2}+2 x^{2}\right ) y^{\prime }+x^{2} \left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

139.627

25676

13493

\begin{align*} x^{2} y^{\prime }&=x^{4} y^{2}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \\ \end{align*}

139.690

25677

13512

\begin{align*} y^{\prime } y-y&=\frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \\ \end{align*}

139.810

25678

13397

\begin{align*} y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

140.188

25679

13831

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y&=0 \\ \end{align*}

140.421

25680

12604

\begin{align*} y^{\prime \prime }&=-\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \\ \end{align*}

140.835

25681

12590

\begin{align*} y^{\prime \prime }&=\frac {2 y^{\prime }}{x \left (x -2\right )}-\frac {y}{x^{2} \left (x -2\right )} \\ \end{align*}

141.892

25682

6089

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

142.140

25683

13605

\begin{align*} y^{\prime } y-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y&=-\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \\ \end{align*}

143.492

25684

5566

\begin{align*} x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y&=0 \\ \end{align*}

143.958

25685

19905

\begin{align*} \left (y-3 x +3\right ) y^{\prime }&=2 y-x -4 \\ \end{align*}

145.332

25686

14074

\begin{align*} \left (-y+y^{\prime } x \right ) \left (y^{\prime } y+x \right )&=a^{2} y^{\prime } \\ \end{align*}

145.536

25687

6185

\begin{align*} 2 \operatorname {a2} y+\left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime \prime }&=0 \\ \end{align*}

145.591

25688

12588

\begin{align*} y^{\prime \prime }&=-\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \\ \end{align*}

145.611

25689

6115

\begin{align*} -a b y+\left (c -\left (a +b +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

147.220

25690

5869

\begin{align*} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=\left (x +1\right ) \sec \left (x \right ) \\ \end{align*}

147.852

25691

2778

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2}+\sin \left (t \right ) \\ x_{2}^{\prime }&=x_{1}-2 x_{2}+\tan \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

147.855

25692

13256

\begin{align*} x^{2} y^{\prime }&=c \,x^{2} y^{2}+\left (a \,x^{n}+b \right ) x y+\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \\ \end{align*}

148.439

25693

13829

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y&=0 \\ \end{align*}

148.598

25694

13842

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-k x +x^{2}\right ) y&=0 \\ \end{align*}

149.687

25695

19977

\begin{align*} y&=-a y^{\prime }+\frac {c +a \arcsin \left (y^{\prime }\right )}{\sqrt {1-{y^{\prime }}^{2}}} \\ \end{align*}

150.202

25696

12576

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y&=0 \\ \end{align*}

151.565

25697

12577

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y&=0 \\ \end{align*}

151.863

25698

12566

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y&=0 \\ \end{align*}

153.312

25699

13480

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \cot \left (\lambda x \right )^{2} \left (a f \left (x \right )-\lambda \right )+a \lambda \\ \end{align*}

153.741

25700

21324

\begin{align*} -x^{\prime \prime }&=1-x-x^{2} \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

153.901