| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 25301 |
\begin{align*}
y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
64.763 |
|
| 25302 |
\begin{align*}
y^{\prime } y-\frac {a \left (x -8\right ) y}{8 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (3 x -4\right )}{8 x^{4}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
64.847 |
|
| 25303 |
\begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
64.977 |
|
| 25304 |
\begin{align*}
b y+a x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
65.009 |
|
| 25305 |
\begin{align*}
y^{\prime } y-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}}&=\frac {a^{2} \left (x -1\right ) \left (1+3 x \right )}{2 x^{4}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
65.237 |
|
| 25306 |
\begin{align*}
x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.270 |
|
| 25307 |
\begin{align*}
\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+2 y x -y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
65.312 |
|
| 25308 |
\begin{align*}
x -\sqrt {y^{2}+x^{2}}+\left (y-\sqrt {y^{2}+x^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.411 |
|
| 25309 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{2}+\sqrt {x^{3}-6 y}+x^{2} \sqrt {x^{3}-6 y}+x^{3} \sqrt {x^{3}-6 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
65.412 |
|
| 25310 |
\begin{align*}
p \left (1+p \right ) y+\left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
65.460 |
|
| 25311 |
\begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
65.632 |
|
| 25312 |
\begin{align*}
\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}-6 x y^{\prime } y-y^{2}+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
65.664 |
|
| 25313 |
\begin{align*}
2 y^{\prime }&=2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
65.720 |
|
| 25314 |
\begin{align*}
\sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
65.737 |
|
| 25315 |
\begin{align*}
\left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
66.010 |
|
| 25316 |
\begin{align*}
\operatorname {a2} x y+\left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
66.060 |
|
| 25317 |
\begin{align*}
y^{\prime } x +y&=y^{\prime } \sqrt {y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.096 |
|
| 25318 | \begin{align*}
v^{2}+x \left (x +v\right ) v^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 66.120 |
|
| 25319 |
\begin{align*}
y^{\prime }&=\frac {\left (1+2 y\right ) \left (1+y\right )}{x \left (-2 y-2+x +2 y x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.151 |
|
| 25320 |
\begin{align*}
y^{2}&=\left (x^{2}+2 y x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.686 |
|
| 25321 |
\begin{align*}
x x^{\prime }+t^{2} x&=\sin \left (t \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
66.697 |
|
| 25322 |
\begin{align*}
y^{\prime }&=\frac {y}{x -k \sqrt {y^{2}+x^{2}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
66.776 |
|
| 25323 |
\begin{align*}
x y^{\prime } y&=a y^{2}+b y+c \,x^{n}+s \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
66.837 |
|
| 25324 |
\begin{align*}
y^{\prime }&=\frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
66.949 |
|
| 25325 |
\begin{align*}
\sqrt {a {y^{\prime \prime }}^{2}+b {y^{\prime }}^{2}}+c y y^{\prime \prime }+d {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
67.201 |
|
| 25326 |
\begin{align*}
y^{\prime } y+\frac {a \left (7 x -12\right ) y}{10 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -16\right )}{10 x^{{9}/{5}}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
67.211 |
|
| 25327 |
\begin{align*}
2 y-1+\left (3 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.268 |
|
| 25328 |
\begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
67.315 |
|
| 25329 |
\begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.564 |
|
| 25330 |
\begin{align*}
\left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.635 |
|
| 25331 |
\begin{align*}
y^{\prime \prime }&=-\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.661 |
|
| 25332 |
\begin{align*}
2-x -y+\left (x +y+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
67.674 |
|
| 25333 |
\begin{align*}
y^{\prime }&=y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
67.758 |
|
| 25334 |
\begin{align*}
\left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
67.817 |
|
| 25335 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
67.869 |
|
| 25336 |
\begin{align*}
y y^{\prime \prime }&=2 {y^{\prime }}^{2}+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
67.993 |
|
| 25337 |
\begin{align*}
3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime }&=0 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.079 |
|
| 25338 | \begin{align*}
y^{\prime } y+\frac {a \left (5 x +1\right ) y}{2 \sqrt {x}}&=a^{2} \left (-x^{2}+1\right ) \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 68.094 |
|
| 25339 |
\begin{align*}
y^{\prime }&=g \left (x \right ) \left (y-f \left (x \right )\right )^{2}+f^{\prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.117 |
|
| 25340 |
\begin{align*}
y^{\prime } x&=\lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.152 |
|
| 25341 |
\begin{align*}
y^{\prime } y&=\left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
68.372 |
|
| 25342 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -l y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
68.530 |
|
| 25343 |
\begin{align*}
4 x -2 y+3+\left (5 y-2 x +7\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
68.536 |
|
| 25344 |
\begin{align*}
y^{\left (10\right )}+y&=x^{10} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
68.570 |
|
| 25345 |
\begin{align*}
\operatorname {a2} y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
68.713 |
|
| 25346 |
\begin{align*}
x^{\prime }&=-x \left (k^{2}+x^{2}\right ) \\
x \left (0\right ) &= x_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
68.906 |
|
| 25347 |
\begin{align*}
x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (a -1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
69.241 |
|
| 25348 |
\begin{align*}
x -\sqrt {y^{2}+x^{2}}+\left (y-\sqrt {y^{2}+x^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
69.257 |
|
| 25349 |
\begin{align*}
x +2 y-4-\left (-5+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
69.263 |
|
| 25350 |
\begin{align*}
x -y-3+\left (3 x -3 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
69.504 |
|
| 25351 |
\begin{align*}
6 y-4 \left (x +a \right ) y^{\prime }+\left (\operatorname {a0} +x \right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
69.626 |
|
| 25352 |
\begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
69.634 |
|
| 25353 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2}&=\left (y^{\prime } y+x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
69.691 |
|
| 25354 |
\begin{align*}
y^{\prime }&=\frac {\left (-1+y \ln \left (x \right )\right )^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
69.697 |
|
| 25355 |
\begin{align*}
\left (a x y-a k y+b x -b k \right ) y^{\prime }&=c y^{2}+d x y+\left (-d k +b \right ) y \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
69.732 |
|
| 25356 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
69.780 |
|
| 25357 |
\begin{align*}
y^{\prime } x&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
70.153 |
|
| 25358 | \begin{align*}
2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 70.156 |
|
| 25359 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
70.237 |
|
| 25360 |
\begin{align*}
y^{\prime } y+\frac {a \left (13 x -18\right ) y}{15 x^{{7}/{5}}}&=-\frac {4 a^{2} \left (x -1\right ) \left (x -6\right )}{15 x^{{9}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
70.296 |
|
| 25361 |
\begin{align*}
x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
70.299 |
|
| 25362 |
\begin{align*}
y^{\prime }&=\frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
70.527 |
|
| 25363 |
\begin{align*}
x^{n} y^{\prime }&=x^{2 n -1}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
70.642 |
|
| 25364 |
\begin{align*}
y^{\prime }&=\frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
70.760 |
|
| 25365 |
\begin{align*}
\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y&=2 x -2 \\
y \left (\infty \right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
70.891 |
|
| 25366 |
\begin{align*}
y^{\prime } y-y&=\frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
70.907 |
|
| 25367 |
\begin{align*}
y&=\left (2 x^{2} y^{3}-x \right ) y^{\prime } \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
70.973 |
|
| 25368 |
\begin{align*}
2 x +y+\left (4 x -2 y+1\right ) y^{\prime }&=0 \\
y \left (\frac {1}{2}\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
71.117 |
|
| 25369 |
\begin{align*}
y^{\prime } y-y&=\frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
71.146 |
|
| 25370 |
\begin{align*}
2 y^{\prime }&=\left (\lambda +a -\cos \left (\lambda x \right ) a \right ) y^{2}+\lambda -a -\cos \left (\lambda x \right ) a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
71.203 |
|
| 25371 |
\begin{align*}
2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
71.237 |
|
| 25372 |
\begin{align*}
y^{\prime } y-\frac {a \left (6 x -13\right ) y}{13 x^{{5}/{2}}}&=-\frac {a^{2} \left (x -1\right ) \left (x -13\right )}{26 x^{4}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
71.263 |
|
| 25373 |
\begin{align*}
x y \left (y^{\prime } x +y\right )&=4 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
71.394 |
|
| 25374 |
\begin{align*}
y x +x^{2} y^{\prime }&=\frac {y^{3}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
71.405 |
|
| 25375 |
\begin{align*}
p^{\prime }&=3 p-2 q-7 r \\
q^{\prime }&=-2 p+6 r \\
r^{\prime }&=\frac {73 q}{100}+2 r \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
71.455 |
|
| 25376 |
\begin{align*}
2 x^{4} y y^{\prime }+y^{4}&=4 x^{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
71.490 |
|
| 25377 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
71.620 |
|
| 25378 | \begin{align*}
x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right )&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 71.691 |
|
| 25379 |
\begin{align*}
{y^{\prime }}^{3}+y^{3}-3 y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
71.784 |
|
| 25380 |
\begin{align*}
{y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
71.869 |
|
| 25381 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
72.003 |
|
| 25382 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (\left (a +1\right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
72.224 |
|
| 25383 |
\begin{align*}
y^{\prime } x&=\left (x -y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
72.385 |
|
| 25384 |
\begin{align*}
y^{\prime \prime }&=-\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
72.447 |
|
| 25385 |
\begin{align*}
\left (c \,x^{2}+b x +a \right ) y+2 \left (1-2 x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
72.539 |
|
| 25386 |
\begin{align*}
y^{\prime }&=\frac {\left (2 y \ln \left (x \right )-1\right )^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
72.546 |
|
| 25387 |
\begin{align*}
-\left (k^{2}-p \left (1+p \right ) \left (-x^{2}+1\right )\right ) y-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
72.848 |
|
| 25388 |
\begin{align*}
\left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
72.934 |
|
| 25389 |
\begin{align*}
\left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
73.111 |
|
| 25390 |
\begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
73.200 |
|
| 25391 |
\begin{align*}
y^{\prime } y+\frac {3 a \left (13 x -8\right ) y}{20 x^{{7}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (27 x -32\right )}{20 x^{{9}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
73.239 |
|
| 25392 |
\begin{align*}
y^{\prime } y-\frac {2 a \left (3 x +2\right ) y}{5 x^{{8}/{5}}}&=\frac {a^{2} \left (x -1\right ) \left (8 x +1\right )}{5 x^{{11}/{5}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
73.265 |
|
| 25393 |
\begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {2 x}{y}}}{y^{2}+y^{2} {\mathrm e}^{\frac {2 x}{y}}+2 x^{2} {\mathrm e}^{\frac {2 x}{y}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
73.323 |
|
| 25394 |
\begin{align*}
3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
73.326 |
|
| 25395 |
\begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime }&=y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
73.343 |
|
| 25396 |
\begin{align*}
\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
73.459 |
|
| 25397 |
\begin{align*}
y^{\prime } y+\frac {a \left (33 x +2\right ) y}{30 x^{{6}/{5}}}&=-\frac {a^{2} \left (x -1\right ) \left (9 x -4\right )}{30 x^{{7}/{5}}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
73.490 |
|
| 25398 | \begin{align*}
x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5}&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 73.641 |
|
| 25399 |
\begin{align*}
{y^{\prime }}^{2}+y^{2}&=\sec \left (x \right )^{4} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
73.871 |
|
| 25400 |
\begin{align*}
x \left (a \,x^{k}+b \right ) y^{\prime }&=\alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
74.086 |
|