| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.217 |
|
| \begin{align*}
2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.201 |
|
| \begin{align*}
y-1-y x +y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
-y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.339 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&={\mathrm e}^{y x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.880 |
|
| \begin{align*}
y y^{\prime \prime }-y^{\prime } y&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.937 |
|
| \begin{align*}
2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
4.503 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x +x^{3} y^{3}} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.568 |
|
| \begin{align*}
y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.365 |
|
| \begin{align*}
{\mathrm e}^{x}+3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| \begin{align*}
y x +2 x^{3} y+x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.114 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime \prime \prime }&=2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
2.155 |
|
| \begin{align*}
y^{\prime } x&=y+\sqrt {x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
21.678 |
|
| \begin{align*}
2 y \left (x \,{\mathrm e}^{x^{2}}+\sin \left (x \right ) \cos \left (x \right ) y\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [[_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 0.439 |
|
| \begin{align*}
\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✗ |
8.766 |
|
| \begin{align*}
y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| \begin{align*}
\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.408 |
|
| \begin{align*}
2 x^{3} y y^{\prime }+3 y^{2} x^{2}+7&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.473 |
|
| \begin{align*}
x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.338 |
|
| \begin{align*}
y^{4}+y x +\left (x y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| \begin{align*}
x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| \begin{align*}
y^{\prime \prime } x&=x +y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.078 |
|
| \begin{align*}
y+2 y^{3} y^{\prime }&=\left (x +4 y \ln \left (y\right )\right ) y^{\prime } \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.375 |
|
| \begin{align*}
y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.553 |
|
| \begin{align*}
2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.612 |
|
| \begin{align*}
2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.971 |
|
| \begin{align*}
y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.635 |
|
| \begin{align*}
2 y^{\prime }+x&=4 \sqrt {y} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Chini] |
✓ |
✓ |
✓ |
✗ |
5.475 |
|
| \begin{align*}
2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x&=y \\
\end{align*} | [[_homogeneous, ‘class C‘], _dAlembert] | ✓ | ✓ | ✗ | ✗ | 0.706 |
|
| \begin{align*}
y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.987 |
|
| \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
17.216 |
|
| \begin{align*}
y \sin \left (x \right )+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.552 |
|
| \begin{align*}
y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.501 |
|
| \begin{align*}
y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right )&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.449 |
|
| \begin{align*}
\left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right )&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.701 |
|
| \begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.733 |
|
| \begin{align*}
2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[‘x=_G(y,y’)‘] |
✓ |
✓ |
✓ |
✗ |
3.274 |
|
| \begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.250 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.057 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.054 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.050 |
|
| \begin{align*}
y^{\prime \prime \prime }+8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.045 |
|
| \begin{align*}
y^{\prime \prime \prime }-8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.052 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.070 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.102 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\
\end{align*} | [[_high_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.060 |
|
| \begin{align*}
y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.058 |
|
| \begin{align*}
y^{\left (6\right )}-64 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.075 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+10 y&=3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.725 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=\left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.019 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sinh \left (x \right ) \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.792 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.560 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime }&=x^{2}+x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime }&=7 x -3 \cos \left (x \right ) \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=\sin \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
y^{\left (5\right )}-3 y^{\prime \prime \prime }+y&=9 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=48 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.136 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime }&=9 x^{2} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.118 |
|
| \begin{align*}
y^{\left (5\right )}+4 y^{\prime \prime \prime }&=7+x \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+16 y&=64 \cos \left (2 x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y&=44 \sin \left (3 x \right ) \\
\end{align*} | [[_high_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.167 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y&=5 \cos \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.138 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=5 \sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=4 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.115 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=8 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.112 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=4 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-y&=12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.688 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )-3 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.674 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (x \right )+10 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.561 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=15 \sin \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 \sin \left (2 x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.132 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \\
\end{align*} | [[_3rd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.173 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=10 \,{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.135 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime }-4 y&=50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=32 \,{\mathrm e}^{2 x}+16 x^{3} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y&=72 \,{\mathrm e}^{3 x}+729 x^{2} \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{x}-\frac {2}{x^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|