2.2.45 Problems 4401 to 4500

Table 2.103: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

4401

\begin{align*} y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

5.217

4402

\begin{align*} 2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.201

4403

\begin{align*} y-1-y x +y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.931

4404

\begin{align*} -y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.339

4405

\begin{align*} y^{\prime }+\frac {y}{x}&={\mathrm e}^{y x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.880

4406

\begin{align*} y y^{\prime \prime }-y^{\prime } y&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.937

4407

\begin{align*} 2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

4.503

4408

\begin{align*} y^{\prime }&=\frac {1}{y x +x^{3} y^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.568

4409

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational]

3.365

4410

\begin{align*} {\mathrm e}^{x}+3 y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

[_Bernoulli]

2.770

4411

\begin{align*} y x +2 x^{3} y+x^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

2.114

4412

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.757

4413

\begin{align*} y^{\prime \prime \prime }&=2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.497

4414

\begin{align*} y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

2.155

4415

\begin{align*} y^{\prime } x&=y+\sqrt {x^{2}-y^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

21.678

4416

\begin{align*} 2 y \left (x \,{\mathrm e}^{x^{2}}+\sin \left (x \right ) \cos \left (x \right ) y\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class B‘]]

0.439

4417

\begin{align*} \cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

8.766

4418

\begin{align*} y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.780

4419

\begin{align*} \left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right )&=\frac {x +y}{x +3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

12.408

4420

\begin{align*} 2 x^{3} y y^{\prime }+3 y^{2} x^{2}+7&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.405

4421

\begin{align*} x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.473

4422

\begin{align*} x^{2} \left (-y+y^{\prime } x \right )&=y \left (x +y\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.338

4423

\begin{align*} y^{4}+y x +\left (x y^{3}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

3.994

4424

\begin{align*} x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.073

4425

\begin{align*} y^{\prime \prime } x&=x +y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

4426

\begin{align*} y+\left (y x -x -y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.078

4427

\begin{align*} y+2 y^{3} y^{\prime }&=\left (x +4 y \ln \left (y\right )\right ) y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.375

4428

\begin{align*} y \ln \left (x \right ) \ln \left (y\right )+y^{\prime }&=0 \\ \end{align*}

[_separable]

2.553

4429

\begin{align*} 2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5.612

4430

\begin{align*} 2 x +y \cos \left (y x \right )+x \cos \left (y x \right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.971

4431

\begin{align*} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.635

4432

\begin{align*} 2 y^{\prime }+x&=4 \sqrt {y} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Chini]

5.475

4433

\begin{align*} 2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x&=y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.706

4434

\begin{align*} y^{\prime }-6 x \,{\mathrm e}^{x -y}-1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.987

4435

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17.216

4436

\begin{align*} y \sin \left (x \right )+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.552

4437

\begin{align*} y \left (6 y^{2}-x -1\right )+2 y^{\prime } x&=0 \\ \end{align*}

[_rational, _Bernoulli]

2.501

4438

\begin{align*} y^{\prime } \left (x -\ln \left (y^{\prime }\right )\right )&=1 \\ \end{align*}

[_quadrature]

1.449

4439

\begin{align*} \left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right )&=0 \\ \end{align*}

[_linear]

3.701

4440

\begin{align*} x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

4.733

4441

\begin{align*} 2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime }&=0 \\ \end{align*}

[‘x=_G(y,y’)‘]

3.274

4442

\begin{align*} x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.250

4443

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.057

4444

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.054

4445

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.050

4446

\begin{align*} y^{\prime \prime \prime }+8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.045

4447

\begin{align*} y^{\prime \prime \prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.043

4448

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.052

4449

\begin{align*} y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.070

4450

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.102

4451

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

4452

\begin{align*} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.060

4453

\begin{align*} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.058

4454

\begin{align*} y^{\left (6\right )}-64 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.075

4455

\begin{align*} y^{\prime \prime }+6 y^{\prime }+10 y&=3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.725

4456

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

4457

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.019

4458

\begin{align*} y^{\prime \prime }+4 y&=\sinh \left (x \right ) \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.792

4459

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

4460

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.441

4461

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x}+2 x^{2} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.876

4462

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime }&=x^{2}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.146

4463

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }&=7 x -3 \cos \left (x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.184

4464

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=\sin \left (x \right ) \cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.700

4465

\begin{align*} y^{\left (5\right )}-3 y^{\prime \prime \prime }+y&=9 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.159

4466

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=48 x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.136

4467

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime }&=9 x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.118

4468

\begin{align*} y^{\left (5\right )}+4 y^{\prime \prime \prime }&=7+x \\ \end{align*}

[[_high_order, _missing_y]]

0.129

4469

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

4470

\begin{align*} y^{\prime \prime \prime \prime }+16 y&=64 \cos \left (2 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.132

4471

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }-y&=44 \sin \left (3 x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.167

4472

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }+5 y^{\prime }+5 y&=5 \cos \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.138

4473

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=5 \sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

4474

\begin{align*} y^{\prime \prime \prime \prime }-y&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.115

4475

\begin{align*} y^{\prime \prime }+4 y&=8 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

4476

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.397

4477

\begin{align*} y^{\prime \prime \prime \prime }-y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.112

4478

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

4479

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

4480

\begin{align*} y^{\prime \prime }+4 y&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.373

4481

\begin{align*} y^{\prime \prime }-y&=12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.688

4482

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )-3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.674

4483

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.869

4484

\begin{align*} y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

4485

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (x \right )+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.499

4486

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.655

4487

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

4488

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=15 \sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.135

4489

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=40 \sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.132

4490

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.173

4491

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=10 \,{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.135

4492

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime }-4 y&=50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.208

4493

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y&=12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.179

4494

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=32 \,{\mathrm e}^{2 x}+16 x^{3} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.158

4495

\begin{align*} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y&=72 \,{\mathrm e}^{3 x}+729 x^{2} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.157

4496

\begin{align*} y^{\prime \prime }-y&=\frac {1}{x}-\frac {2}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

4497

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

4498

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

4499

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

4500

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.473