| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 25101 |
\begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
50.521 |
|
| 25102 |
\begin{align*}
\sin \left (y\right ) \left (x +\sin \left (y\right )\right )+2 x^{2} y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
50.772 |
|
| 25103 |
\begin{align*}
12 x^{3} y+24 y^{2} x^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
50.786 |
|
| 25104 |
\begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } y+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
50.827 |
|
| 25105 |
\begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
50.895 |
|
| 25106 |
\begin{align*}
x^{2}+y^{2}+1+x \left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
50.968 |
|
| 25107 |
\begin{align*}
y^{\prime } y&=a y \cosh \left (x \right )+1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
51.056 |
|
| 25108 |
\begin{align*}
2 y^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-1+x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
51.137 |
|
| 25109 |
\begin{align*}
y^{\prime }&=-a \ln \left (x \right ) y^{2}+a f \left (x \right ) \left (x \ln \left (x \right )-x \right ) y-f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
51.138 |
|
| 25110 |
\begin{align*}
y^{\prime \prime }-y y^{\prime }&=6 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
51.208 |
|
| 25111 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
51.295 |
|
| 25112 |
\begin{align*}
z^{\prime }+4 z&={\mathrm e}^{8 i t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
51.434 |
|
| 25113 |
\begin{align*}
z^{\prime }+4 i z&={\mathrm e}^{8 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
51.465 |
|
| 25114 |
\begin{align*}
\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (n \,x^{2}+m x +k \right ) y^{\prime }+\left (-2 \left (a +n \right ) x +1\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
51.512 |
|
| 25115 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
51.539 |
|
| 25116 |
\begin{align*}
\left (\operatorname {b1} \,x^{2}+\operatorname {b0} \right ) y+\left (\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0} \right ) y^{\prime }+4 \left (1-x \right ) x \left (-a x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
51.627 |
|
| 25117 |
\begin{align*}
\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma &=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
51.663 |
|
| 25118 | \begin{align*}
y^{\prime }&=f \left (x \right ) y^{2}-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 51.924 |
|
| 25119 |
\begin{align*}
\left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime }&=y^{3} \csc \left (x \right ) \sec \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
51.961 |
|
| 25120 |
\begin{align*}
\left (x +y\right )^{2} y^{\prime }&=\left (x +y+2\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
51.966 |
|
| 25121 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{\sqrt {a y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
52.122 |
|
| 25122 |
\begin{align*}
y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
52.125 |
|
| 25123 |
\begin{align*}
y^{\prime }&=y^{{2}/{3}}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
52.256 |
|
| 25124 |
\begin{align*}
{x^{\prime }}^{2}+t x&=\sqrt {t +1} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
52.319 |
|
| 25125 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
52.467 |
|
| 25126 |
\begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
52.482 |
|
| 25127 |
\begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
52.485 |
|
| 25128 |
\begin{align*}
y^{\prime }&=-\frac {y \left (y x +1\right )}{x \left (y x +1-y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
52.894 |
|
| 25129 |
\begin{align*}
\left (y+a x +b \right ) y^{\prime }&=\alpha y+\beta x +\gamma \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
52.945 |
|
| 25130 |
\begin{align*}
3 \sin \left (y\right )-5 x +2 x^{2} \cot \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.100 |
|
| 25131 |
\begin{align*}
y^{\prime }&=y^{2} \left (1+y\right ) \left (y-4\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.354 |
|
| 25132 |
\begin{align*}
4 x^{2} y^{2} y^{\prime }-3 x y^{3}&=x^{2} y^{3}+2 x^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.454 |
|
| 25133 |
\begin{align*}
y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.530 |
|
| 25134 |
\begin{align*}
y^{\prime }&=\frac {2 x +y+1}{x +2 y+2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.541 |
|
| 25135 |
\begin{align*}
2 y^{\prime \prime }&=\sin \left (2 y\right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
53.602 |
|
| 25136 |
\begin{align*}
{\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
53.613 |
|
| 25137 |
\begin{align*}
y^{\prime } y-y&=A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
53.694 |
|
| 25138 | \begin{align*}
\left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 53.710 |
|
| 25139 |
\begin{align*}
y&=x {y^{\prime }}^{2}+\ln \left ({y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.731 |
|
| 25140 |
\begin{align*}
y^{\prime } y-y&=-\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
53.769 |
|
| 25141 |
\begin{align*}
p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
53.771 |
|
| 25142 |
\begin{align*}
y^{\prime }&=\frac {y \left (x^{3}+x^{2} y+y^{2}\right )}{x^{2} \left (x -1\right ) \left (x +y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.776 |
|
| 25143 |
\begin{align*}
x -4 y-3-\left (x -6 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
53.835 |
|
| 25144 |
\begin{align*}
2 y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.965 |
|
| 25145 |
\begin{align*}
y^{\prime }&=4 \left (y x \right )^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
53.993 |
|
| 25146 |
\begin{align*}
\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.079 |
|
| 25147 |
\begin{align*}
2 x y^{\prime } y&=\left (1-n \right ) y^{2}+\left (a \left (2 n +1\right ) x +2 n -1\right ) y-a^{2} n \,x^{2}-b x -n \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
54.204 |
|
| 25148 |
\begin{align*}
y^{\prime }&=-\frac {x}{2}-\frac {a}{2}+\sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.226 |
|
| 25149 |
\begin{align*}
y^{\prime } y+a x +b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.310 |
|
| 25150 |
\begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.400 |
|
| 25151 |
\begin{align*}
y \left (y^{2} x^{2}-1\right )+x \left (x^{2} y+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
54.400 |
|
| 25152 |
\begin{align*}
\left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.496 |
|
| 25153 |
\begin{align*}
y^{\prime }&=-\frac {{\mathrm e}^{y}}{x \,{\mathrm e}^{y}+2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.510 |
|
| 25154 |
\begin{align*}
r^{\prime \prime }&=-\frac {k}{r^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.526 |
|
| 25155 |
\begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
54.609 |
|
| 25156 |
\begin{align*}
x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right )&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
54.706 |
|
| 25157 |
\begin{align*}
y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.805 |
|
| 25158 | \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 54.852 |
|
| 25159 |
\begin{align*}
\left (b x +a \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) y^{\prime }+4 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.930 |
|
| 25160 |
\begin{align*}
\left (1-x^{2} y\right ) y^{\prime }-1+x y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.938 |
|
| 25161 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.962 |
|
| 25162 |
\begin{align*}
y^{\prime }&=-\frac {\left (-8-8 y^{3}+24 y^{{3}/{2}} {\mathrm e}^{x}-18 \,{\mathrm e}^{2 x}-8 y^{{9}/{2}}+36 y^{3} {\mathrm e}^{x}-54 \,{\mathrm e}^{2 x} y^{{3}/{2}}+27 \,{\mathrm e}^{3 x}\right ) {\mathrm e}^{x}}{8 \sqrt {y}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
54.996 |
|
| 25163 |
\begin{align*}
y^{\prime } y-y&=-\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
55.118 |
|
| 25164 |
\begin{align*}
y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.142 |
|
| 25165 |
\begin{align*}
y^{\prime }&=\left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
55.186 |
|
| 25166 |
\begin{align*}
y^{\prime }&=\frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
55.231 |
|
| 25167 |
\begin{align*}
y^{3} {y^{\prime }}^{3}-\left (1-3 x \right ) y^{2} {y^{\prime }}^{2}+3 x^{2} y y^{\prime }+x^{3}-y^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
55.273 |
|
| 25168 |
\begin{align*}
y^{\prime } y-y&=\frac {15 x}{4}+\frac {6 A}{x^{{1}/{3}}}-\frac {3 A^{2}}{x^{{5}/{3}}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
55.285 |
|
| 25169 |
\begin{align*}
y^{\prime }&=\frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
55.426 |
|
| 25170 |
\begin{align*}
y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.483 |
|
| 25171 |
\begin{align*}
y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
55.501 |
|
| 25172 |
\begin{align*}
y^{\prime }&=a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
55.569 |
|
| 25173 |
\begin{align*}
x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
55.602 |
|
| 25174 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y&=x^{2} \sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.003 |
|
| 25175 |
\begin{align*}
y^{\prime }&=-\frac {y^{3}}{\left (-1+y \ln \left (x \right )-y\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.379 |
|
| 25176 |
\begin{align*}
x^{\prime }&=x^{3}-x \\
x \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.438 |
|
| 25177 |
\begin{align*}
R^{\prime \prime }&=-\frac {k}{R^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.555 |
|
| 25178 | \begin{align*}
y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 56.664 |
|
| 25179 |
\begin{align*}
t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.664 |
|
| 25180 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
56.839 |
|
| 25181 |
\begin{align*}
\left (x -y^{\prime }-y\right )^{2}&=x^{2} \left (2 y x -x^{2} y^{\prime }\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
56.909 |
|
| 25182 |
\begin{align*}
y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.931 |
|
| 25183 |
\begin{align*}
y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
56.944 |
|
| 25184 |
\begin{align*}
y^{\prime }&=\frac {y^{3} x \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+9 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
56.960 |
|
| 25185 |
\begin{align*}
y^{\prime }&=\frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (x +1\right ) y^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
56.966 |
|
| 25186 |
\begin{align*}
y^{\prime }&=y^{2}+\cos \left (t \right )^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.204 |
|
| 25187 |
\begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.204 |
|
| 25188 |
\begin{align*}
x^{\prime }&=x^{3}+a x^{2}-b x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.283 |
|
| 25189 |
\begin{align*}
3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.296 |
|
| 25190 |
\begin{align*}
y^{\prime } y-y&=-\frac {12 x}{49}+A \sqrt {x} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
57.339 |
|
| 25191 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
57.417 |
|
| 25192 |
\begin{align*}
y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.491 |
|
| 25193 |
\begin{align*}
x \left (x -2 y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.535 |
|
| 25194 |
\begin{align*}
y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.563 |
|
| 25195 |
\begin{align*}
2 y^{\prime } x +1&=4 i x y+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.595 |
|
| 25196 |
\begin{align*}
y^{\prime \prime }-\frac {a^{2}}{y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.627 |
|
| 25197 |
\begin{align*}
\left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+x \left (\operatorname {b0} \,x^{2}+\operatorname {a0} \right ) y^{\prime }+\left (a^{2}-x^{2}\right )^{2} \left (b^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
57.648 |
|
| 25198 | \begin{align*}
x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 57.711 |
|
| 25199 |
\begin{align*}
y^{\prime }&=-\frac {y^{3}}{\left (-1+2 y \ln \left (x \right )-y\right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
57.727 |
|
| 25200 |
\begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
57.768 |
|