| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 24801 |
\begin{align*}
\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
33.668 |
|
| 24802 |
\begin{align*}
3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
33.697 |
|
| 24803 |
\begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
33.735 |
|
| 24804 |
\begin{align*}
\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-y^{2}+a^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
33.736 |
|
| 24805 |
\begin{align*}
y^{\prime }&=\sigma y^{2}+a y+b \,{\mathrm e}^{x}+c \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.744 |
|
| 24806 |
\begin{align*}
y^{\prime }&=a \,x^{n}+b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.747 |
|
| 24807 |
\begin{align*}
\left (1+y\right ) y^{\prime }-y-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.748 |
|
| 24808 |
\begin{align*}
{y^{\prime }}^{3}+m {y^{\prime }}^{2}&=a \left (y+m x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
33.766 |
|
| 24809 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
33.793 |
|
| 24810 |
\begin{align*}
-\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
33.819 |
|
| 24811 |
\begin{align*}
y^{\prime } x +a_{0} +a_{1} x +\left (a_{2} +a_{3} x y\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.851 |
|
| 24812 |
\begin{align*}
y&=\frac {x}{y^{\prime }}-a y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.861 |
|
| 24813 |
\begin{align*}
{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (-1+2 y\right ) y^{\prime }+3 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.868 |
|
| 24814 |
\begin{align*}
y^{\prime }&=y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
33.868 |
|
| 24815 |
\begin{align*}
\left (b \,x^{2}+a \right ) y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
33.898 |
|
| 24816 |
\begin{align*}
y^{\prime }&=\sqrt {\frac {5 x -6 y}{5 x +6 y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
33.900 |
|
| 24817 |
\begin{align*}
y^{\prime } y+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
33.967 |
|
| 24818 | \begin{align*}
y^{\prime }&=\frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 34.039 |
|
| 24819 |
\begin{align*}
9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
34.053 |
|
| 24820 |
\begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.056 |
|
| 24821 |
\begin{align*}
y^{\prime }&=\frac {3 y^{2} \cot \left (x \right )+\cos \left (x \right ) \sin \left (x \right )}{2 y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.138 |
|
| 24822 |
\begin{align*}
y^{\prime }&=\frac {-\sinh \left (x \right )+\ln \left (x \right ) x^{2}+2 x y \ln \left (x \right )+\ln \left (x \right )+y^{2} \ln \left (x \right )}{\sinh \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.141 |
|
| 24823 |
\begin{align*}
5 x y^{\prime } y-y^{2}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.142 |
|
| 24824 |
\begin{align*}
y^{\prime } \cos \left (y\right )+\left (\sin \left (y\right )-1\right ) \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.183 |
|
| 24825 |
\begin{align*}
\tan \left (y\right )-2+\left (x \sec \left (y\right )^{2}+\frac {1}{y}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.220 |
|
| 24826 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
34.237 |
|
| 24827 |
\begin{align*}
\left (a_{2} +b_{2} x +c_{2} y\right ) y^{\prime }&=a_{1} +b_{1} x +c_{1} y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.402 |
|
| 24828 |
\begin{align*}
x^{n +1} y^{n}+a y+\left (x^{n} y^{n +1}+a x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
34.420 |
|
| 24829 |
\begin{align*}
y^{\prime }-\frac {-x^{2} \sqrt {x^{2}-y^{2}}+y}{x y \sqrt {x^{2}-y^{2}}+x}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
34.438 |
|
| 24830 |
\begin{align*}
y^{\prime }&=\frac {2 x +y}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.476 |
|
| 24831 |
\begin{align*}
x^{\prime \prime }-x+3 x^{2}&=0 \\
x \left (0\right ) &= {\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
34.511 |
|
| 24832 |
\begin{align*}
y^{\prime } y&=\frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
34.557 |
|
| 24833 |
\begin{align*}
2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime }&=g \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.640 |
|
| 24834 |
\begin{align*}
y^{\prime } y+a y+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.645 |
|
| 24835 |
\begin{align*}
x +2 y-1-\left (-5+2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.742 |
|
| 24836 |
\begin{align*}
y^{\prime } \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.774 |
|
| 24837 | \begin{align*}
y^{\prime }&=\frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 34.780 |
|
| 24838 |
\begin{align*}
12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
34.825 |
|
| 24839 |
\begin{align*}
\frac {x y}{\sqrt {x^{2}+1}}+2 y x -\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.829 |
|
| 24840 |
\begin{align*}
\left (-y+y^{\prime } x \right ) \left (x -y^{\prime } y\right )&=2 y^{\prime } \\
\end{align*} |
✗ |
✗ |
✓ |
✗ |
34.830 |
|
| 24841 |
\begin{align*}
y^{\prime } y-y&=\frac {A}{x}-\frac {A^{2}}{x^{3}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
34.841 |
|
| 24842 |
\begin{align*}
x^{\prime }-x+2 y-z&=t^{2} \\
y^{\prime }+3 x-y+4 z&={\mathrm e}^{t} \\
z^{\prime }-2 x+y-z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
34.880 |
|
| 24843 |
\begin{align*}
y^{\prime }&=\frac {\left (y x +1\right )^{3}}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.019 |
|
| 24844 |
\begin{align*}
{\mathrm e}^{-x} y-\sin \left (x \right )-\left ({\mathrm e}^{-x}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.122 |
|
| 24845 |
\begin{align*}
U^{\prime }&=\frac {U+1}{\sqrt {s}+\sqrt {s U}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
35.131 |
|
| 24846 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.224 |
|
| 24847 |
\begin{align*}
\left (3 x +y\right )^{2} y^{\prime }&=4 \left (2 y+3 x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.259 |
|
| 24848 |
\begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
35.273 |
|
| 24849 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
35.286 |
|
| 24850 |
\begin{align*}
y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.309 |
|
| 24851 |
\begin{align*}
\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
35.336 |
|
| 24852 |
\begin{align*}
y^{2}&=x \left (y-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.377 |
|
| 24853 |
\begin{align*}
y^{\prime }&=-\frac {x}{4}+\frac {1}{4}+\sqrt {x^{2}-2 x +1+8 y}+x^{2} \sqrt {x^{2}-2 x +1+8 y}+x^{3} \sqrt {x^{2}-2 x +1+8 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
35.384 |
|
| 24854 |
\begin{align*}
z^{\prime }-z \sin \left (x \right )&={\mathrm e}^{-\cos \left (x \right )} \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.402 |
|
| 24855 |
\begin{align*}
y^{2}+\left (3 y x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.495 |
|
| 24856 | \begin{align*}
\left (3 x -y-9\right ) y^{\prime }&=10-2 x +2 y \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 35.505 |
|
| 24857 |
\begin{align*}
{y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.540 |
|
| 24858 |
\begin{align*}
\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime }&={\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.638 |
|
| 24859 |
\begin{align*}
c y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.672 |
|
| 24860 |
\begin{align*}
y^{\prime }&=\sin \left (x +y\right )+\cos \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.711 |
|
| 24861 |
\begin{align*}
\frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.716 |
|
| 24862 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (a +x \tan \left (x \right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
35.760 |
|
| 24863 |
\begin{align*}
\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.825 |
|
| 24864 |
\begin{align*}
2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
35.899 |
|
| 24865 |
\begin{align*}
{y^{\prime }}^{4}&=4 y \left (y^{\prime } x -2 y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.919 |
|
| 24866 |
\begin{align*}
y^{\prime }&=y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.927 |
|
| 24867 |
\begin{align*}
y^{\prime }&=\sqrt {25-y^{2}} \\
y \left (4\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
35.981 |
|
| 24868 |
\begin{align*}
2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.072 |
|
| 24869 |
\begin{align*}
y^{\prime \prime }+\sin \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.077 |
|
| 24870 |
\begin{align*}
y^{\prime }&=\frac {a^{3}+y^{2} a^{3}+2 a^{2} b x y+b^{2} x^{2} a +y^{3} a^{3}+3 a^{2} b x y^{2}+3 a \,b^{2} x^{2} y+b^{3} x^{3}}{a^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.102 |
|
| 24871 |
\begin{align*}
y^{\prime }&=\frac {b^{3}+y^{2} b^{3}+2 a \,b^{2} x y+a^{2} b \,x^{2}+b^{3} y^{3}+3 a \,b^{2} x y^{2}+3 a^{2} b \,x^{2} y+a^{3} x^{3}}{b^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.129 |
|
| 24872 |
\begin{align*}
y^{\prime }&=\frac {x}{2}+\frac {1}{2}+\sqrt {x^{2}+2 x +1-4 y}+x^{2} \sqrt {x^{2}+2 x +1-4 y}+x^{3} \sqrt {x^{2}+2 x +1-4 y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.147 |
|
| 24873 |
\begin{align*}
-\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.211 |
|
| 24874 |
\begin{align*}
y^{\prime }&=\frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.254 |
|
| 24875 | \begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-a^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 36.263 |
|
| 24876 |
\begin{align*}
2 x y^{3}+y \cos \left (x \right )+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.268 |
|
| 24877 |
\begin{align*}
{y^{\prime }}^{4}-4 x^{2} y {y^{\prime }}^{2}+16 y^{2} y^{\prime } x -16 y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.336 |
|
| 24878 |
\begin{align*}
2 a \left (a +1\right ) y-\left (1+3 x \right ) y^{\prime }+2 \left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.353 |
|
| 24879 |
\begin{align*}
x^{\prime }&=\sqrt {x^{2}-1} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.364 |
|
| 24880 |
\begin{align*}
\left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{3} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.371 |
|
| 24881 |
\begin{align*}
6 y y^{\prime \prime }-6 \left (1-6 x \right ) x y^{\prime } y^{\prime \prime }+\left (2-9 x \right ) x^{2} {y^{\prime \prime }}^{2}&=36 x {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.395 |
|
| 24882 |
\begin{align*}
y^{\prime }+y&=2 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.431 |
|
| 24883 |
\begin{align*}
2 x -y+\left (-3+x +y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.448 |
|
| 24884 |
\begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.454 |
|
| 24885 |
\begin{align*}
x^{2} y^{\prime }-y x&=x^{2}-y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.465 |
|
| 24886 |
\begin{align*}
2 x y^{3}+y \cos \left (x \right )+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.487 |
|
| 24887 |
\begin{align*}
\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
36.507 |
|
| 24888 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=3 x^{2} y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.508 |
|
| 24889 |
\begin{align*}
y^{\prime \prime }+\cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.678 |
|
| 24890 |
\begin{align*}
\left (x^{2}+3 y x -y^{2}\right ) y^{\prime }-3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.690 |
|
| 24891 |
\begin{align*}
\left (x +\sec \left (y\right ) \cos \left (x \right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.695 |
|
| 24892 |
\begin{align*}
\left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
36.720 |
|
| 24893 |
\begin{align*}
\left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
36.842 |
|
| 24894 | \begin{align*}
r^{\prime }&=\frac {r \sin \left (t \right )}{2 r \cos \left (t \right )-1} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 36.905 |
|
| 24895 |
\begin{align*}
y^{\prime } x&=\left (a y+b \ln \left (x \right )\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.909 |
|
| 24896 |
\begin{align*}
\left (3 y \cos \left (x \right )+2\right ) y^{\prime }&=\sin \left (x \right ) y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
36.920 |
|
| 24897 |
\begin{align*}
x y^{\prime } y&=-n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
37.094 |
|
| 24898 |
\begin{align*}
\sqrt {2 a y-y^{2}}\, \csc \left (x \right )+y \tan \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
37.123 |
|
| 24899 |
\begin{align*}
y^{\prime } x +a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
37.207 |
|
| 24900 |
\begin{align*}
\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
37.214 |
|