| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 22601 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.661 |
|
| 22602 |
\begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.663 |
|
| 22603 |
\begin{align*}
\left (3 x +3 y-4\right ) y^{\prime }&=-x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.665 |
|
| 22604 |
\begin{align*}
\left (x +2 y+2 x^{2} y^{3}+y^{4} x \right ) y^{\prime }+y^{5}+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.665 |
|
| 22605 |
\begin{align*}
y^{\prime }&=a y-b y^{2} \\
y \left (0\right ) &= \operatorname {y0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.671 |
|
| 22606 |
\begin{align*}
y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.671 |
|
| 22607 |
\begin{align*}
y^{\prime }&=y^{2}+9 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.672 |
|
| 22608 |
\begin{align*}
y^{\prime }&=\sqrt {x -y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
6.678 |
|
| 22609 |
\begin{align*}
{y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
6.678 |
|
| 22610 |
\begin{align*}
y^{\prime }&=x +\frac {\sec \left (x \right ) y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| 22611 |
\begin{align*}
y^{\prime }&=\frac {4 y^{2}-t^{2}}{2 t y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| 22612 |
\begin{align*}
y^{\prime }&=\frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.687 |
|
| 22613 |
\begin{align*}
y^{\prime }&=\frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.690 |
|
| 22614 |
\begin{align*}
\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.697 |
|
| 22615 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.700 |
|
| 22616 |
\begin{align*}
{x^{\prime }}^{2}&=k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
6.707 |
|
| 22617 |
\begin{align*}
\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.714 |
|
| 22618 | \begin{align*}
6 x -3 y+2-\left (2 x -y-1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.719 |
|
| 22619 |
\begin{align*}
\left (3 x-y \right ) x^{\prime }+9 y -2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.722 |
|
| 22620 |
\begin{align*}
y^{\prime }&=-\lambda \,{\mathrm e}^{\lambda x} y^{2}+a \,x^{n} {\mathrm e}^{\lambda x} y-a \,x^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.723 |
|
| 22621 |
\begin{align*}
y^{\prime }&=\frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.724 |
|
| 22622 |
\begin{align*}
\left (1-x \right ) y^{\prime }-1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.725 |
|
| 22623 |
\begin{align*}
\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}}&=\left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.727 |
|
| 22624 |
\begin{align*}
y^{\prime }&={\mathrm e}^{3 x -2 y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.729 |
|
| 22625 |
\begin{align*}
y^{\prime } x -2 y&=\frac {x^{6}}{y+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.732 |
|
| 22626 |
\begin{align*}
\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+\left (c \,{\mathrm e}^{\lambda x}+d \right ) y^{\prime }+k \left (\left (-a k +c \right ) {\mathrm e}^{\lambda x}+d -b k \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.733 |
|
| 22627 |
\begin{align*}
y^{\prime }&=\frac {-\sin \left (2 y\right )+x \cos \left (2 y\right )+\cos \left (2 y\right ) x^{3}+\cos \left (2 y\right ) x^{4}+x +x^{3}+x^{4}}{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.735 |
|
| 22628 |
\begin{align*}
y \left (1+y^{2}\right )+x \left (y^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.738 |
|
| 22629 |
\begin{align*}
a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.739 |
|
| 22630 |
\begin{align*}
y^{\prime }&=\frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.742 |
|
| 22631 |
\begin{align*}
y^{\prime }&=\frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.742 |
|
| 22632 |
\begin{align*}
2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.750 |
|
| 22633 |
\begin{align*}
\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right )&=0 \\
y \left (1\right ) &= \frac {\pi }{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.750 |
|
| 22634 |
\begin{align*}
\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.751 |
|
| 22635 |
\begin{align*}
y^{\prime }&=x -y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.756 |
|
| 22636 |
\begin{align*}
y^{\prime } x&=a y^{3}+3 a b \,x^{n} y^{2}-b n \,x^{n}-2 a \,b^{3} x^{3 n} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.759 |
|
| 22637 | \begin{align*}
\left (\cos \left (x \right )+1\right ) y^{\prime }&=\sin \left (x \right ) \left (\sin \left (x \right )+\cos \left (x \right ) \sin \left (x \right )-y\right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.760 |
|
| 22638 |
\begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.762 |
|
| 22639 |
\begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.769 |
|
| 22640 |
\begin{align*}
a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.769 |
|
| 22641 |
\begin{align*}
4 x y^{\prime } y&=8 x^{2}+5 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.772 |
|
| 22642 |
\begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (1\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| 22643 |
\begin{align*}
y^{\prime }&=\frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| 22644 |
\begin{align*}
2 x y^{\prime } y+3 x^{2}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.786 |
|
| 22645 |
\begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.789 |
|
| 22646 |
\begin{align*}
2 x^{2} y^{\prime }&=2 y^{2}+3 y x -2 a^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.792 |
|
| 22647 |
\begin{align*}
y^{\prime }&=\frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.798 |
|
| 22648 |
\begin{align*}
y^{\prime }&=\frac {32 x^{5}+64 x^{6}+64 x^{6} y^{2}+32 x^{4} y+4 x^{2}+64 x^{6} y^{3}+48 x^{4} y^{2}+12 x^{2} y+1}{64 x^{8}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.805 |
|
| 22649 |
\begin{align*}
a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.806 |
|
| 22650 |
\begin{align*}
y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.809 |
|
| 22651 |
\begin{align*}
{y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.810 |
|
| 22652 |
\begin{align*}
y^{\prime }&=\frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.811 |
|
| 22653 |
\begin{align*}
x x^{\prime }&=1-t x \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
6.812 |
|
| 22654 |
\begin{align*}
x \left (x +y\right ) y^{\prime }-y \left (x +y\right )+x \sqrt {x^{2}-y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.813 |
|
| 22655 |
\begin{align*}
{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.815 |
|
| 22656 | \begin{align*}
y^{\prime } x&=6 y+12 x^{4} y^{{2}/{3}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.816 |
|
| 22657 |
\begin{align*}
x^{2} y^{\prime }+y \left (x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.819 |
|
| 22658 |
\begin{align*}
x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.821 |
|
| 22659 |
\begin{align*}
y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.823 |
|
| 22660 |
\begin{align*}
3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.832 |
|
| 22661 |
\begin{align*}
y^{\prime }&=\frac {a^{2} x +a^{3} x^{3}+a^{3} x^{3} y^{2}+2 y a^{2} x^{2}+a x +a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{3} x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.833 |
|
| 22662 |
\begin{align*}
x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.835 |
|
| 22663 |
\begin{align*}
x y^{\prime } y&=3 x^{2}+4 y^{2} \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.839 |
|
| 22664 |
\begin{align*}
x^{2} y^{\prime }&=\left (1+2 x -y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.839 |
|
| 22665 |
\begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.841 |
|
| 22666 |
\begin{align*}
y^{\prime }&=a y^{3} x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.846 |
|
| 22667 |
\begin{align*}
x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right ) x \right ) y&=\cos \left (x \right ) \sin \left (x \right )-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.846 |
|
| 22668 |
\begin{align*}
x^{2} y^{\prime }&=\left (x +a y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.850 |
|
| 22669 |
\begin{align*}
y^{\prime }+\frac {a x +b y+c}{b x +f y+e}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.853 |
|
| 22670 |
\begin{align*}
y^{\prime } x +y&=\left (y x \right )^{{3}/{2}} \\
y \left (1\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.854 |
|
| 22671 |
\begin{align*}
3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.857 |
|
| 22672 |
\begin{align*}
3 y-5 t +2 y y^{\prime }-t y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.857 |
|
| 22673 |
\begin{align*}
x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.861 |
|
| 22674 |
\begin{align*}
y^{\prime } x -2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.862 |
|
| 22675 | \begin{align*}
\left (a b x +a n +b m \right ) y+\left (m +n +\left (a +b \right ) x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 6.863 |
|
| 22676 |
\begin{align*}
x +y+1+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.865 |
|
| 22677 |
\begin{align*}
2 \left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }+a \lambda \,{\mathrm e}^{\lambda x} y^{\prime }+c y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.865 |
|
| 22678 |
\begin{align*}
2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
6.867 |
|
| 22679 |
\begin{align*}
x y^{3}+{\mathrm e}^{x^{2}} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.872 |
|
| 22680 |
\begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.874 |
|
| 22681 |
\begin{align*}
x +y^{\prime } y+\frac {-y+y^{\prime } x}{y^{2}+x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.881 |
|
| 22682 |
\begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.882 |
|
| 22683 |
\begin{align*}
8 x^{3} y y^{\prime }+3 x^{4}-6 y^{2} x^{2}-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.892 |
|
| 22684 |
\begin{align*}
y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x -1+y^{4} x^{3}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.892 |
|
| 22685 |
\begin{align*}
2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.892 |
|
| 22686 |
\begin{align*}
x^{\prime }+x&=\operatorname {Heaviside}\left (t -a \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
6.896 |
|
| 22687 |
\begin{align*}
{y^{\prime }}^{2}+3 x^{2}&=8 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.897 |
|
| 22688 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.898 |
|
| 22689 |
\begin{align*}
y^{\prime }&=\frac {2 a}{x \left (-y x +2 a x y^{2}-8 a^{2}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.901 |
|
| 22690 |
\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
6.908 |
|
| 22691 |
\begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.915 |
|
| 22692 |
\begin{align*}
2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime }&=0 \\
y \left (3\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.916 |
|
| 22693 |
\begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
6.916 |
|
| 22694 |
\begin{align*}
y^{\prime } x&=2 x^{2} y+y \ln \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.919 |
|
| 22695 | \begin{align*}
y-\left ({\mathrm e}^{3 x}+1\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 6.920 |
|
| 22696 |
\begin{align*}
t y-y^{2}+t \left (t -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.921 |
|
| 22697 |
\begin{align*}
\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| 22698 |
\begin{align*}
y^{\prime } x&=y^{2} x^{2}+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| 22699 |
\begin{align*}
x +y+4&=\left (2 x +2 y-1\right ) y^{\prime } \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.933 |
|
| 22700 |
\begin{align*}
x +y-1+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
6.933 |
|