| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21901 |
\begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.122 |
|
| 21902 |
\begin{align*}
\left (t -\sqrt {t y}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.123 |
|
| 21903 |
\begin{align*}
\left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.128 |
|
| 21904 |
\begin{align*}
y-2 x -1+\left (x +y-4\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.129 |
|
| 21905 |
\begin{align*}
y^{\prime }+y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.132 |
|
| 21906 |
\begin{align*}
y^{3}+y^{\prime }&=0 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.133 |
|
| 21907 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=\frac {\sin \left (2 x \right )}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.134 |
|
| 21908 |
\begin{align*}
r^{\prime }&=r \tan \left (t \right ) \\
r \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.134 |
|
| 21909 |
\begin{align*}
y^{\prime \prime }&=a^{2}+k^{2} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.138 |
|
| 21910 |
\begin{align*}
y^{\prime } x +y+x y \left (1+y^{\prime }\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.138 |
|
| 21911 |
\begin{align*}
y^{\prime }&=\left (4 x +y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.140 |
|
| 21912 |
\begin{align*}
\frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.141 |
|
| 21913 |
\begin{align*}
\left (y x +x \right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.144 |
|
| 21914 |
\begin{align*}
2 x -1+\left (3 y+7\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.144 |
|
| 21915 |
\begin{align*}
y^{\prime } x -2 \sqrt {y x}&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.144 |
|
| 21916 |
\begin{align*}
y^{\prime } \ln \left (x -y\right )&=1+\ln \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.146 |
|
| 21917 |
\begin{align*}
x^{\prime \prime }&=x^{3}-x \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
5.146 |
|
| 21918 | \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 5.146 |
|
| 21919 |
\begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.148 |
|
| 21920 |
\begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.149 |
|
| 21921 |
\begin{align*}
x^{4} y^{\prime }&=\left (x^{3}+y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.155 |
|
| 21922 |
\begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.155 |
|
| 21923 |
\begin{align*}
t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.155 |
|
| 21924 |
\begin{align*}
y^{\prime \prime } x +\left (a x +b +n \right ) y^{\prime }+n a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.156 |
|
| 21925 |
\begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.165 |
|
| 21926 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
y \left (\sqrt {\pi }\right ) &= 3 \\
y^{\prime }\left (\sqrt {\pi }\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.165 |
|
| 21927 |
\begin{align*}
y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.168 |
|
| 21928 |
\begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 4 t & 0\le t \le 1 \\ 4 & 1<t \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
5.168 |
|
| 21929 |
\begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.173 |
|
| 21930 |
\begin{align*}
3 y y^{\prime } y^{\prime \prime }&=-1+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.175 |
|
| 21931 |
\begin{align*}
y^{\prime }&=x y^{3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.177 |
|
| 21932 |
\begin{align*}
y^{\prime }&=\frac {-a x -b y}{b x +c y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.178 |
|
| 21933 |
\begin{align*}
y^{\prime }&=y+{\mathrm e}^{-y}+2 t \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.178 |
|
| 21934 |
\begin{align*}
\left (6 x -2 y\right ) y^{\prime }&=2+3 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.178 |
|
| 21935 |
\begin{align*}
x +y-1+\left (2 x +2 y-3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.178 |
|
| 21936 |
\begin{align*}
{y^{\prime }}^{3}&=y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.178 |
|
| 21937 |
\begin{align*}
2 x -y-2+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.179 |
|
| 21938 | \begin{align*}
y^{2}+2 x^{2}+x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 5.179 |
|
| 21939 |
\begin{align*}
3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.183 |
|
| 21940 |
\begin{align*}
y^{\prime }&=\frac {t}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.184 |
|
| 21941 |
\begin{align*}
y^{\prime }&=2 x +1+y^{2}-2 x^{2} y+x^{4}+y^{3}-3 y^{2} x^{2}+3 x^{4} y-x^{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.191 |
|
| 21942 |
\begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.192 |
|
| 21943 |
\begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.193 |
|
| 21944 |
\begin{align*}
\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.194 |
|
| 21945 |
\begin{align*}
y^{\prime }&=-\frac {2 x}{3}+1+y^{2}+\frac {2 x^{2} y}{3}+\frac {x^{4}}{9}+y^{3}+y^{2} x^{2}+\frac {x^{4} y}{3}+\frac {x^{6}}{27} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.194 |
|
| 21946 |
\begin{align*}
x^{2} y^{\prime }&=\frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.197 |
|
| 21947 |
\begin{align*}
\left (2 x +1\right ) y^{\prime }+y&=\left (2 x +1\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.198 |
|
| 21948 |
\begin{align*}
\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime }&=2 \,{\mathrm e}^{-2 x} x -\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.198 |
|
| 21949 |
\begin{align*}
w^{\prime }&=-\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \\
w \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.200 |
|
| 21950 |
\begin{align*}
p^{\prime }&=\frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.207 |
|
| 21951 |
\begin{align*}
y^{\prime } x&=a \,x^{4} y^{3}+\left (b \,x^{2}-1\right ) y+c x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.215 |
|
| 21952 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.217 |
|
| 21953 |
\begin{align*}
\left (a \,x^{2}+b x +c \right )^{2} \left (y^{\prime }+y^{2}\right )+A&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.218 |
|
| 21954 |
\begin{align*}
\left (a x +b y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.223 |
|
| 21955 |
\begin{align*}
a y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.223 |
|
| 21956 |
\begin{align*}
y^{\prime }&=\frac {x}{2 y}+\frac {y}{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.223 |
|
| 21957 | \begin{align*}
3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 5.226 |
|
| 21958 |
\begin{align*}
x y^{\prime } y-y^{2}+a \,x^{3} \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.227 |
|
| 21959 |
\begin{align*}
x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.228 |
|
| 21960 |
\begin{align*}
\cos \left (x \right )^{2} \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{3} y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.228 |
|
| 21961 |
\begin{align*}
x \sinh \left (y\right ) y^{\prime }&=\cosh \left (y\right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.230 |
|
| 21962 |
\begin{align*}
y^{\prime }&=\frac {x +1+y^{4}-2 y^{2} x^{2}+x^{4}+y^{6}-3 x^{2} y^{4}+3 x^{4} y^{2}-x^{6}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.230 |
|
| 21963 |
\begin{align*}
y^{\prime } y&=a \,{\mathrm e}^{\lambda x} y+1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.230 |
|
| 21964 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{4}+\left (-x^{2}+1\right ) y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.233 |
|
| 21965 |
\begin{align*}
1+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.233 |
|
| 21966 |
\begin{align*}
y^{\prime }&=a y+b y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.234 |
|
| 21967 |
\begin{align*}
x^{3} y^{\prime }-\sin \left (y\right )&=1 \\
y \left (\infty \right ) &= 5 \pi \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
5.235 |
|
| 21968 |
\begin{align*}
2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.236 |
|
| 21969 |
\begin{align*}
\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right )&=0 \\
y \left ({\mathrm e}\right ) &= {\mathrm e}^{-1} \\
y^{\prime }\left ({\mathrm e}\right ) &= 0 \\
\end{align*} Series expansion around \(x={\mathrm e}\). |
✓ |
✓ |
✓ |
✓ |
5.237 |
|
| 21970 |
\begin{align*}
\left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (b -x \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (b -x \right )^{2} \left (c -x \right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.242 |
|
| 21971 |
\begin{align*}
x y^{\prime } y+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.243 |
|
| 21972 |
\begin{align*}
y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
5.245 |
|
| 21973 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.245 |
|
| 21974 |
\begin{align*}
y^{\prime }+\tan \left (\theta \right ) y&=\cos \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.246 |
|
| 21975 |
\begin{align*}
\left ({\mathrm e}^{x}-3 y^{2} x^{2}\right ) y^{\prime }+{\mathrm e}^{x} y&=2 x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.247 |
|
| 21976 |
\begin{align*}
y^{\prime }&=\frac {4 y-3 x}{2 x -y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.248 |
|
| 21977 | \begin{align*}
3 y^{\prime } x&=\left (2+x y^{3}\right ) y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 5.251 |
|
| 21978 |
\begin{align*}
y \left (2 y x +1\right )-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.251 |
|
| 21979 |
\begin{align*}
x y^{\prime } y&=y^{2}+x^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.253 |
|
| 21980 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.253 |
|
| 21981 |
\begin{align*}
{\mathrm e}^{x} \cos \left (y\right )+x -\left ({\mathrm e}^{x} \sin \left (y\right )+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
5.257 |
|
| 21982 |
\begin{align*}
\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.261 |
|
| 21983 |
\begin{align*}
\left (y+{\mathrm e}^{\frac {x}{y}} x \right ) y^{\prime }&={\mathrm e}^{\frac {x}{y}} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.261 |
|
| 21984 |
\begin{align*}
y^{\prime }&=\frac {3 x -4 y-2}{3 x -4 y-3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.263 |
|
| 21985 |
\begin{align*}
y^{\prime }&=\left (-\ln \left (y\right )+x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.266 |
|
| 21986 |
\begin{align*}
y^{\prime } x +a y-f \left (x \right ) g \left (x^{a} y\right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
5.270 |
|
| 21987 |
\begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| 21988 |
\begin{align*}
x y^{\prime } y&=\sqrt {1+y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| 21989 |
\begin{align*}
y^{\prime }&=-\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.274 |
|
| 21990 |
\begin{align*}
x^{3}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.274 |
|
| 21991 |
\begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.276 |
|
| 21992 |
\begin{align*}
3 {y^{\prime }}^{4} x&=y {y^{\prime }}^{3}+1 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
5.277 |
|
| 21993 |
\begin{align*}
\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x}&=\frac {1-2 \ln \left (x \right )}{x} \\
y \left (1\right ) &= {\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.280 |
|
| 21994 |
\begin{align*}
x^{\prime }&=a x+b x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.280 |
|
| 21995 |
\begin{align*}
\left (3+2 x +4 y\right ) y^{\prime }&=x +2 y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.283 |
|
| 21996 | \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 5.283 |
|
| 21997 |
\begin{align*}
y^{\prime }&=t y^{2} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.286 |
|
| 21998 |
\begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.289 |
|
| 21999 |
\begin{align*}
y^{\prime \prime }&=-m^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.289 |
|
| 22000 |
\begin{align*}
\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
5.291 |
|