| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 21601 |
\begin{align*}
\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.681 |
|
| 21602 |
\begin{align*}
y^{\prime } y&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.682 |
|
| 21603 |
\begin{align*}
{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.683 |
|
| 21604 |
\begin{align*}
\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.685 |
|
| 21605 |
\begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.686 |
|
| 21606 |
\begin{align*}
y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.687 |
|
| 21607 |
\begin{align*}
y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right )&=\cos \left (\frac {x}{2}-\frac {y}{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.688 |
|
| 21608 |
\begin{align*}
y^{\prime \prime }-y x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.690 |
|
| 21609 |
\begin{align*}
x^{\prime \prime }&=x-x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.690 |
|
| 21610 |
\begin{align*}
\left (a x +b y\right ) y^{\prime }+b x +a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.691 |
|
| 21611 |
\begin{align*}
x \left (y \ln \left (y x \right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (y x \right )-y+a x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.693 |
|
| 21612 |
\begin{align*}
y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.696 |
|
| 21613 |
\begin{align*}
\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.696 |
|
| 21614 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.697 |
|
| 21615 |
\begin{align*}
y^{2} x^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| 21616 |
\begin{align*}
x \left (3-y x \right ) y^{\prime }&=y \left (y x -1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| 21617 |
\begin{align*}
y+y^{\prime }&=y^{2} {\mathrm e}^{-t} \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.699 |
|
| 21618 | \begin{align*}
-\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 4.702 |
|
| 21619 |
\begin{align*}
y^{\prime }&=\frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.703 |
|
| 21620 |
\begin{align*}
y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.703 |
|
| 21621 |
\begin{align*}
y-\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.704 |
|
| 21622 |
\begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.706 |
|
| 21623 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=-x^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.709 |
|
| 21624 |
\begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.709 |
|
| 21625 |
\begin{align*}
y^{\prime } x +y&=y^{2} x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.710 |
|
| 21626 |
\begin{align*}
x \left (x +y\right ) y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.710 |
|
| 21627 |
\begin{align*}
\left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.712 |
|
| 21628 |
\begin{align*}
\left (y x +1\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.713 |
|
| 21629 |
\begin{align*}
3 y^{\prime } x&=\left (3 y^{3} \ln \left (x \right ) x +1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.720 |
|
| 21630 |
\begin{align*}
x \left (-x^{2}+1\right ) y^{\prime }&=x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.720 |
|
| 21631 |
\begin{align*}
x^{\prime }&={\mathrm e}^{t} \left (1+x^{2}\right ) \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.720 |
|
| 21632 |
\begin{align*}
2 \,{\mathrm e}^{\frac {x}{y}} y+\left (y-2 \,{\mathrm e}^{\frac {x}{y}} x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.725 |
|
| 21633 |
\begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.726 |
|
| 21634 |
\begin{align*}
x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.727 |
|
| 21635 |
\begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.727 |
|
| 21636 |
\begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.728 |
|
| 21637 |
\begin{align*}
y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.728 |
|
| 21638 | \begin{align*}
y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\
\end{align*} | ✗ | ✓ | ✗ | ✗ | 4.731 |
|
| 21639 |
\begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.733 |
|
| 21640 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
4.734 |
|
| 21641 |
\begin{align*}
y^{\prime } x -a y+b y^{2}&=c \,x^{2 a} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.734 |
|
| 21642 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.736 |
|
| 21643 |
\begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.737 |
|
| 21644 |
\begin{align*}
y^{\prime }&=1+y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
4.741 |
|
| 21645 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.741 |
|
| 21646 |
\begin{align*}
x&=t x^{\prime }-{\mathrm e}^{x^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.741 |
|
| 21647 |
\begin{align*}
\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.742 |
|
| 21648 |
\begin{align*}
-\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.743 |
|
| 21649 |
\begin{align*}
\left (1-4 x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.744 |
|
| 21650 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=y^{2} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.744 |
|
| 21651 |
\begin{align*}
y^{\prime } x +\tan \left (\frac {y}{x}\right ) x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.745 |
|
| 21652 |
\begin{align*}
2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.746 |
|
| 21653 |
\begin{align*}
y&=x +3 \ln \left (y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.746 |
|
| 21654 |
\begin{align*}
y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.747 |
|
| 21655 |
\begin{align*}
y^{\prime } x&=y+x \sin \left (\frac {y}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.749 |
|
| 21656 |
\begin{align*}
-y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| 21657 |
\begin{align*}
4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| 21658 | \begin{align*}
y^{\prime }&=-a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 4.751 |
|
| 21659 |
\begin{align*}
x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.753 |
|
| 21660 |
\begin{align*}
x \left (a +x y^{n}\right ) y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.756 |
|
| 21661 |
\begin{align*}
\tan \left (\frac {y}{x}\right ) x +y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.757 |
|
| 21662 |
\begin{align*}
y^{\prime }&=\left (a +b x y\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.759 |
|
| 21663 |
\begin{align*}
y^{\prime } x&=a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.759 |
|
| 21664 |
\begin{align*}
\left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.761 |
|
| 21665 |
\begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.761 |
|
| 21666 |
\begin{align*}
y^{\prime }+x^{2} \left (1+y\right ) \left (y-2\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.762 |
|
| 21667 |
\begin{align*}
y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.763 |
|
| 21668 |
\begin{align*}
y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x +1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.763 |
|
| 21669 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.764 |
|
| 21670 |
\begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.766 |
|
| 21671 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.771 |
|
| 21672 |
\begin{align*}
\left (-2 y x +x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.773 |
|
| 21673 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+y x -4 x^{2} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.775 |
|
| 21674 |
\begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.776 |
|
| 21675 |
\begin{align*}
y^{\prime }&=\frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.777 |
|
| 21676 |
\begin{align*}
\left (x +4 y\right ) y^{\prime }+4 x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.782 |
|
| 21677 | \begin{align*}
\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.782 |
|
| 21678 |
\begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.783 |
|
| 21679 |
\begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.790 |
|
| 21680 |
\begin{align*}
y^{\prime } x&=a y+b \left (-x^{2}+1\right ) y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.793 |
|
| 21681 |
\begin{align*}
1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.793 |
|
| 21682 |
\begin{align*}
\left (x +2 y^{3}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.795 |
|
| 21683 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
4.796 |
|
| 21684 |
\begin{align*}
\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.796 |
|
| 21685 |
\begin{align*}
y^{\prime }&=\sin \left (t -y\right )+\sin \left (t +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| 21686 |
\begin{align*}
-y+y^{\prime } x&=x^{2} y y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| 21687 |
\begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| 21688 |
\begin{align*}
y^{\prime }&=-\frac {\ln \left (x -1\right )-\coth \left (x +1\right ) x^{2}-2 \coth \left (x +1\right ) x y-\coth \left (x +1\right )-\coth \left (x +1\right ) y^{2}}{\ln \left (x -1\right )} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
4.800 |
|
| 21689 |
\begin{align*}
x^{2} y^{\prime }&=x^{2}-y x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.802 |
|
| 21690 |
\begin{align*}
\left (2 x^{2} y^{3}+y^{2} x^{2}-2 x \right ) y^{\prime }-2 y-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| 21691 |
\begin{align*}
2 t x^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| 21692 |
\begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| 21693 |
\begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.807 |
|
| 21694 |
\begin{align*}
2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.810 |
|
| 21695 |
\begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.812 |
|
| 21696 | \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 4.813 |
|
| 21697 |
\begin{align*}
y^{\prime }&=\frac {2 x +y-1}{4 x +2 y+5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.813 |
|
| 21698 |
\begin{align*}
x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.819 |
|
| 21699 |
\begin{align*}
y+2+y \left (x +4\right ) y^{\prime }&=0 \\
y \left (-3\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
4.819 |
|
| 21700 |
\begin{align*}
y^{\prime } \sin \left (2 x \right )&=2 y+2 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
4.820 |
|