2.3.217 Problems 21601 to 21700

Table 2.965: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

21601

15385

\begin{align*} \frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\ \end{align*}

4.681

21602

8310

\begin{align*} y^{\prime } y&=-x \\ y \left (0\right ) &= 4 \\ \end{align*}

4.682

21603

11800

\begin{align*} {y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d&=0 \\ \end{align*}

4.683

21604

5589

\begin{align*} \left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2}&=0 \\ \end{align*}

4.685

21605

23122

\begin{align*} y^{\prime }&=\frac {x -y}{x +y} \\ y \left (0\right ) &= -1 \\ \end{align*}

4.686

21606

19985

\begin{align*} y&=y {y^{\prime }}^{2}+2 y^{\prime } x \\ \end{align*}

4.687

21607

18054

\begin{align*} y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right )&=\cos \left (\frac {x}{2}-\frac {y}{2}\right ) \\ \end{align*}

4.688

21608

10110

\begin{align*} y^{\prime \prime }-y x -x^{2}&=0 \\ \end{align*}

4.690

21609

21254

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ \end{align*}

4.690

21610

5119

\begin{align*} \left (a x +b y\right ) y^{\prime }+b x +a y&=0 \\ \end{align*}

4.691

21611

11639

\begin{align*} x \left (y \ln \left (y x \right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (y x \right )-y+a x \right )&=0 \\ \end{align*}

4.693

21612

12697

\begin{align*} y^{\prime \prime }&=-\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \\ \end{align*}

4.696

21613

13974

\begin{align*} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime }&=0 \\ \end{align*}

4.696

21614

19252

\begin{align*} y^{\prime }&=2 y x \\ \end{align*}

4.697

21615

4356

\begin{align*} y^{2} x^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime }&=0 \\ \end{align*}

4.698

21616

5185

\begin{align*} x \left (3-y x \right ) y^{\prime }&=y \left (y x -1\right ) \\ \end{align*}

4.698

21617

2998

\begin{align*} y+y^{\prime }&=y^{2} {\mathrm e}^{-t} \\ y \left (0\right ) &= 2 \\ \end{align*}

4.699

21618

6264

\begin{align*} -\left (\operatorname {a4} \,x^{4}+\operatorname {a2} \,x^{2}+\operatorname {a0} \right ) y+2 x \left (a^{2}+2 x^{2}\right ) y^{\prime }+\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

4.702

21619

4304

\begin{align*} y^{\prime }&=\frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \\ y \left (0\right ) &= 1 \\ \end{align*}

4.703

21620

4826

\begin{align*} y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\ \end{align*}

4.703

21621

23198

\begin{align*} y-\left (x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

4.704

21622

19902

\begin{align*} x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

4.706

21623

19789

\begin{align*} y^{\prime }+\frac {y}{x}&=-x^{2}+1 \\ \end{align*}

4.709

21624

25757

\begin{align*} y^{\prime } x +y&=\frac {1}{y^{2}} \\ \end{align*}

4.709

21625

2991

\begin{align*} y^{\prime } x +y&=y^{2} x^{2} \cos \left (x \right ) \\ \end{align*}

4.710

21626

5146

\begin{align*} x \left (x +y\right ) y^{\prime }&=y^{2}+x^{2} \\ \end{align*}

4.710

21627

19319

\begin{align*} \left (2+x \right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

4.712

21628

25760

\begin{align*} \left (y x +1\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

4.713

21629

4863

\begin{align*} 3 y^{\prime } x&=\left (3 y^{3} \ln \left (x \right ) x +1\right ) y \\ \end{align*}

4.720

21630

4983

\begin{align*} x \left (-x^{2}+1\right ) y^{\prime }&=x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \\ \end{align*}

4.720

21631

21056

\begin{align*} x^{\prime }&={\mathrm e}^{t} \left (1+x^{2}\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

4.720

21632

6903

\begin{align*} 2 \,{\mathrm e}^{\frac {x}{y}} y+\left (y-2 \,{\mathrm e}^{\frac {x}{y}} x \right ) y^{\prime }&=0 \\ \end{align*}

4.725

21633

9082

\begin{align*} x^{5} y^{\prime }+y^{5}&=0 \\ \end{align*}

4.726

21634

15358

\begin{align*} x +2 y+1-\left (3+2 x +4 y\right ) y^{\prime }&=0 \\ \end{align*}

4.727

21635

15621

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \\ y \left (-1\right ) &= 1 \\ \end{align*}

4.727

21636

21337

\begin{align*} y^{\prime } x +y&=0 \\ \end{align*}

4.728

21637

22500

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

4.728

21638

13960

\begin{align*} y^{\prime \prime }+a \,{\mathrm e}^{b \,x^{n}} y^{\prime }+c \left (a \,{\mathrm e}^{b \,x^{n}}-c \right ) y&=0 \\ \end{align*}

4.731

21639

4440

\begin{align*} x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\ \end{align*}

4.733

21640

12855

\begin{align*} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y&=0 \\ \end{align*}

4.734

21641

14014

\begin{align*} y^{\prime } x -a y+b y^{2}&=c \,x^{2 a} \\ \end{align*}

4.734

21642

7681

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=y x +1 \\ \end{align*}

4.736

21643

13977

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

4.737

21644

8885

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

4.741

21645

19390

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=4 x^{3} \\ \end{align*}

4.741

21646

21098

\begin{align*} x&=t x^{\prime }-{\mathrm e}^{x^{\prime }} \\ \end{align*}

4.741

21647

14447

\begin{align*} \frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime }&=0 \\ \end{align*}

4.742

21648

5845

\begin{align*} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

4.743

21649

5088

\begin{align*} \left (1-4 x -2 y\right ) y^{\prime }+2 x +y&=0 \\ \end{align*}

4.744

21650

7509

\begin{align*} y^{\prime }+\frac {y}{x}&=y^{2} x^{2} \\ \end{align*}

4.744

21651

11424

\begin{align*} y^{\prime } x +\tan \left (\frac {y}{x}\right ) x -y&=0 \\ \end{align*}

4.745

21652

2516

\begin{align*} 2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

4.746

21653

3295

\begin{align*} y&=x +3 \ln \left (y^{\prime }\right ) \\ \end{align*}

4.746

21654

17880

\begin{align*} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\ \end{align*}

4.747

21655

4821

\begin{align*} y^{\prime } x&=y+x \sin \left (\frac {y}{x}\right ) \\ \end{align*}

4.749

21656

6857

\begin{align*} -y+y^{\prime } x&=\sqrt {y^{2}+x^{2}} \\ \end{align*}

4.750

21657

17927

\begin{align*} 4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \\ \end{align*}

4.750

21658

13235

\begin{align*} y^{\prime }&=-a n \,x^{n -1} y^{2}+c \,x^{m} \left (a \,x^{n}+b \right ) y-c \,x^{m} \\ \end{align*}

4.751

21659

22430

\begin{align*} x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime }&=0 \\ \end{align*}

4.753

21660

5331

\begin{align*} x \left (a +x y^{n}\right ) y^{\prime }+b y&=0 \\ \end{align*}

4.756

21661

14467

\begin{align*} \tan \left (\frac {y}{x}\right ) x +y-y^{\prime } x&=0 \\ \end{align*}

4.757

21662

4697

\begin{align*} y^{\prime }&=\left (a +b x y\right ) y^{2} \\ \end{align*}

4.759

21663

13348

\begin{align*} y^{\prime } x&=a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \\ \end{align*}

4.759

21664

5300

\begin{align*} \left (x^{2}-x^{3}+3 x y^{2}+2 y^{3}\right ) y^{\prime }+2 x^{3}+3 x^{2} y+y^{2}-y^{3}&=0 \\ \end{align*}

4.761

21665

8213

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (\frac {1}{2}\right ) &= -4 \\ \end{align*}

4.761

21666

1598

\begin{align*} y^{\prime }+x^{2} \left (1+y\right ) \left (y-2\right )^{2}&=0 \\ \end{align*}

4.762

21667

19070

\begin{align*} y^{\prime }&=\frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \\ \end{align*}

4.763

21668

22408

\begin{align*} y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x +1\right )} \\ \end{align*}

4.763

21669

20689

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) y^{n} \\ \end{align*}

4.764

21670

5702

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\ \end{align*}

4.766

21671

11855

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1&=0 \\ \end{align*}

4.771

21672

2938

\begin{align*} \left (-2 y x +x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

4.773

21673

1662

\begin{align*} x^{2} y^{\prime }&=y^{2}+y x -4 x^{2} \\ y \left (-1\right ) &= 0 \\ \end{align*}

4.775

21674

5125

\begin{align*} x y^{\prime } y+x^{2}+y^{2}&=0 \\ \end{align*}

4.776

21675

9017

\begin{align*} y^{\prime }&=\frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \\ \end{align*}

4.777

21676

5101

\begin{align*} \left (x +4 y\right ) y^{\prime }+4 x -y&=0 \\ \end{align*}

4.782

21677

11457

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+a x y^{2}+y x&=0 \\ \end{align*}

4.782

21678

14000

\begin{align*} x^{2} y^{\prime }+y^{2}-y x&=0 \\ \end{align*}

4.783

21679

25723

\begin{align*} y^{\prime } y&=3 x \\ y \left (2\right ) &= -4 \\ \end{align*}

4.790

21680

4801

\begin{align*} y^{\prime } x&=a y+b \left (-x^{2}+1\right ) y^{3} \\ \end{align*}

4.793

21681

20277

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\ \end{align*}

4.793

21682

20680

\begin{align*} \left (x +2 y^{3}\right ) y^{\prime }&=y \\ \end{align*}

4.795

21683

12701

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \\ \end{align*}

4.796

21684

16351

\begin{align*} \sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime }&=0 \\ \end{align*}

4.796

21685

17100

\begin{align*} y^{\prime }&=\sin \left (t -y\right )+\sin \left (t +y\right ) \\ \end{align*}

4.799

21686

22554

\begin{align*} -y+y^{\prime } x&=x^{2} y y^{\prime } \\ \end{align*}

4.799

21687

23837

\begin{align*} y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\ \end{align*}

4.799

21688

12071

\begin{align*} y^{\prime }&=-\frac {\ln \left (x -1\right )-\coth \left (x +1\right ) x^{2}-2 \coth \left (x +1\right ) x y-\coth \left (x +1\right )-\coth \left (x +1\right ) y^{2}}{\ln \left (x -1\right )} \\ \end{align*}

4.800

21689

17913

\begin{align*} x^{2} y^{\prime }&=x^{2}-y x +y^{2} \\ \end{align*}

4.802

21690

11615

\begin{align*} \left (2 x^{2} y^{3}+y^{2} x^{2}-2 x \right ) y^{\prime }-2 y-1&=0 \\ \end{align*}

4.804

21691

14198

\begin{align*} 2 t x^{\prime }&=x \\ \end{align*}

4.804

21692

21105

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

4.804

21693

15551

\begin{align*} y^{\prime }&=\frac {y}{y-x} \\ \end{align*}

4.807

21694

4352

\begin{align*} 2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime }&=0 \\ \end{align*}

4.810

21695

8660

\begin{align*} y^{\prime } x&=\sqrt {1-y^{2}} \\ \end{align*}

4.812

21696

186

\begin{align*} x^{2} y^{\prime }+2 y x&=y^{2} \\ \end{align*}

4.813

21697

6816

\begin{align*} y^{\prime }&=\frac {2 x +y-1}{4 x +2 y+5} \\ \end{align*}

4.813

21698

5173

\begin{align*} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\ \end{align*}

4.819

21699

14471

\begin{align*} y+2+y \left (x +4\right ) y^{\prime }&=0 \\ y \left (-3\right ) &= -1 \\ \end{align*}

4.819

21700

19357

\begin{align*} y^{\prime } \sin \left (2 x \right )&=2 y+2 \cos \left (x \right ) \\ \end{align*}

4.820