2.3.192 Problems 19101 to 19200

Table 2.915: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

19101

15946

\begin{align*} y^{\prime }&=t y \\ \end{align*}

2.580

19102

21450

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\ \end{align*}

2.580

19103

9387

\begin{align*} \left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.581

19104

14838

\begin{align*} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x&=0 \\ \end{align*}

2.581

19105

5864

\begin{align*} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.582

19106

3552

\begin{align*} x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\ \end{align*}

2.583

19107

15546

\begin{align*} y^{\prime }&=\frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \\ \end{align*}

2.585

19108

15795

\begin{align*} x^{\prime }&=-t x \\ x \left (0\right ) &= \frac {1}{\sqrt {\pi }} \\ \end{align*}

2.585

19109

20891

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

2.585

19110

4843

\begin{align*} \left (x +a \right ) y^{\prime }+b \,x^{2}+y&=0 \\ \end{align*}

2.586

19111

22381

\begin{align*} y^{\prime } x&=2 x +3 y \\ \end{align*}

2.586

19112

24362

\begin{align*} 2 x -3 y+4+3 \left (x -1\right ) y^{\prime }&=0 \\ y \left (-1\right ) &= 2 \\ \end{align*}

2.586

19113

5842

\begin{align*} b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.587

19114

13689

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

2.587

19115

22555

\begin{align*} q^{\prime }&=\frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q} \\ \end{align*}

2.587

19116

4614

\begin{align*} y^{\prime }&=a +b \,{\mathrm e}^{k x}+c y \\ \end{align*}

2.588

19117

7536

\begin{align*} y^{\prime }-\frac {y}{x}&=x^{2} \sin \left (2 x \right ) \\ \end{align*}

2.588

19118

12500

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

2.588

19119

15774

\begin{align*} y^{\prime }&=\frac {1+y}{t +1} \\ \end{align*}

2.588

19120

7941

\begin{align*} y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

2.589

19121

8859

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \sin \left (x \right ) \\ \end{align*}

2.589

19122

11469

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{4}&=0 \\ \end{align*}

2.589

19123

12362

\begin{align*} y^{\prime \prime } x +y^{\prime }+\left (x +a \right ) y&=0 \\ \end{align*}

2.589

19124

65

\begin{align*} -y+y^{\prime } x&=2 x^{2} y \\ y \left (1\right ) &= 1 \\ \end{align*}

2.590

19125

7001

\begin{align*} y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.590

19126

12104

\begin{align*} y^{\prime }&=\frac {x \left ({\mathrm e}^{-2 x^{2}} x^{4}-4 x^{2} {\mathrm e}^{-x^{2}} y-4 x^{2} {\mathrm e}^{-x^{2}}+4 y^{2}+4 \,{\mathrm e}^{-x^{2}}\right )}{4} \\ \end{align*}

2.590

19127

21479

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=f \left (x \right ) \\ \end{align*}

2.590

19128

22549

\begin{align*} \left (\sin \left (y\right )-x \right ) y^{\prime }&=2 x +y \\ y \left (1\right ) &= \frac {\pi }{2} \\ \end{align*}

2.590

19129

1602

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )}{\sin \left (y\right )} \\ y \left (\pi \right ) &= \frac {\pi }{2} \\ \end{align*}

2.592

19130

17127

\begin{align*} y^{\prime }&=-\frac {y-2}{x -2} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.592

19131

1572

\begin{align*} \left (x^{2}-1\right ) y^{\prime }-2 y x&=x \left (x^{2}-1\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}

2.593

19132

5311

\begin{align*} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \\ \end{align*}

2.595

19133

19489

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\ \end{align*}

2.596

19134

3244

\begin{align*} y^{\prime \prime }&=k^{2} y \\ \end{align*}

2.597

19135

12600

\begin{align*} y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \\ \end{align*}

2.597

19136

4207

\begin{align*} \sin \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

2.598

19137

5341

\begin{align*} x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=y \\ \end{align*}

2.598

19138

6825

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

2.598

19139

15956

\begin{align*} y^{\prime }&=3 y+2 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.598

19140

4654

\begin{align*} y^{\prime }+1-x&=y \left (x +y\right ) \\ \end{align*}

2.599

19141

17400

\begin{align*} y^{\prime \prime }+36 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

2.599

19142

9094

\begin{align*} \frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\ y \left (1\right ) &= 3 \\ \end{align*}

2.600

19143

4642

\begin{align*} y^{\prime }&=\sin \left (2 x \right )+\tan \left (x \right ) y \\ \end{align*}

2.601

19144

9154

\begin{align*} x^{2} y^{\prime }&=y^{2}+2 y x \\ \end{align*}

2.602

19145

11417

\begin{align*} y^{\prime } x -y \ln \left (y\right )&=0 \\ \end{align*}

2.602

19146

14432

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

2.602

19147

11396

\begin{align*} y^{\prime } x -y^{2}+1&=0 \\ \end{align*}

2.603

19148

22023

\begin{align*} x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.603

19149

7011

\begin{align*} \left (y^{2}+a \sin \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

2.605

19150

9945

\begin{align*} y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.605

19151

15927

\begin{align*} y^{\prime }&=\sin \left (t \right ) y+4 \\ \end{align*}

2.605

19152

4620

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )-y \cos \left (x \right ) \\ \end{align*}

2.607

19153

9936

\begin{align*} x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.607

19154

3028

\begin{align*} x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.608

19155

3658

\begin{align*} y^{\prime }-\frac {3 y}{2 x}&=6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \\ \end{align*}

2.608

19156

4702

\begin{align*} y^{\prime }&=\left (\tan \left (x \right )+y^{3} \sec \left (x \right )\right ) y \\ \end{align*}

2.608

19157

9143

\begin{align*} 3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime }&=0 \\ \end{align*}

2.608

19158

11762

\begin{align*} 4 y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

2.608

19159

21279

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=\lambda x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.608

19160

5866

\begin{align*} -a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

2.611

19161

17846

\begin{align*} y^{\prime }&=\left (3 x -y\right )^{{1}/{3}}-1 \\ \end{align*}

2.611

19162

3008

\begin{align*} 2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.612

19163

5426

\begin{align*} {y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2}&=0 \\ \end{align*}

2.612

19164

7162

\begin{align*} \cos \left (y\right ) \sin \left (x \right )&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\ \end{align*}

2.612

19165

8233

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (5\right ) &= 3 \\ \end{align*}

2.612

19166

18488

\begin{align*} r^{\prime }&=\frac {r^{2}}{\theta } \\ r \left (1\right ) &= 2 \\ \end{align*}

2.612

19167

1599

\begin{align*} \left (x +1\right ) \left (x -2\right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= -3 \\ \end{align*}

2.613

19168

19889

\begin{align*} z^{\prime }+5 y-2 z&=x \\ y^{\prime }+4 y+z&=x \\ \end{align*}

2.614

19169

707

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x^{2}} \\ \end{align*}

2.615

19170

6828

\begin{align*} \cos \left (y\right ) \sin \left (x \right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\ \end{align*}

2.615

19171

8672

\begin{align*} x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

2.615

19172

13917

\begin{align*} \left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\ \end{align*}

2.615

19173

22011

\begin{align*} y^{\prime }&=y x \\ y \left (1\right ) &= -2 \\ \end{align*}

2.615

19174

3606

\begin{align*} y^{\prime }&=y^{3} \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.617

19175

7563

\begin{align*} y^{\prime }-4 y&=2 x y^{2} \\ y \left (0\right ) &= -4 \\ \end{align*}

2.618

19176

15818

\begin{align*} y^{\prime }&=\left (t +1\right ) y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

2.618

19177

21617

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

2.620

19178

12340

\begin{align*} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\ \end{align*}

2.621

19179

19751

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

2.621

19180

55

\begin{align*} y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\ \end{align*}

2.622

19181

13217

\begin{align*} \left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0}&=0 \\ \end{align*}

2.622

19182

17159

\begin{align*} y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

2.622

19183

20238

\begin{align*} y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

2.622

19184

7019

\begin{align*} \left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2}&=0 \\ \end{align*}

2.623

19185

12919

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-a&=0 \\ \end{align*}

2.623

19186

1536

\begin{align*} y^{\prime }&=-1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \\ \end{align*}

2.625

19187

4205

\begin{align*} \cos \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

2.625

19188

15936

\begin{align*} y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\ \end{align*}

2.625

19189

11765

\begin{align*} \left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c&=0 \\ \end{align*}

2.626

19190

22601

\begin{align*} x^{2} y^{3}+2 x y^{2}+y+\left (x^{3} y^{2}-2 x^{2} y+x \right ) y^{\prime }&=0 \\ \end{align*}

2.626

19191

11481

\begin{align*} x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2}&=0 \\ \end{align*}

2.627

19192

4213

\begin{align*} y^{\prime }&=6 x y^{2} \\ \end{align*}

2.628

19193

5058

\begin{align*} \left (x +y\right ) y^{\prime }+\tan \left (y\right )&=0 \\ \end{align*}

2.628

19194

7709

\begin{align*} x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\ \end{align*}

2.628

19195

4619

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )+y \cos \left (x \right ) \\ \end{align*}

2.629

19196

8881

\begin{align*} y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\ y \left (\pi \right ) &= \pi \\ \end{align*}

2.631

19197

8694

\begin{align*} 2 y^{\prime } x&=\left (2 x^{2}-y^{2}\right ) y \\ \end{align*}

2.632

19198

8873

\begin{align*} L y^{\prime }+R y&=E \sin \left (\omega x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.632

19199

9816

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

2.632

19200

16281

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=x \left (3+3 x^{2}-y\right ) \\ y \left (2\right ) &= 8 \\ \end{align*}

2.632