| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 19101 |
\begin{align*}
y^{\prime }&=t y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| 19102 |
\begin{align*}
y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.580 |
|
| 19103 |
\begin{align*}
\left (1+3 x \right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.581 |
|
| 19104 |
\begin{align*}
\sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.581 |
|
| 19105 |
\begin{align*}
a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.582 |
|
| 19106 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.583 |
|
| 19107 |
\begin{align*}
y^{\prime }&=\frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.585 |
|
| 19108 |
\begin{align*}
x^{\prime }&=-t x \\
x \left (0\right ) &= \frac {1}{\sqrt {\pi }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.585 |
|
| 19109 |
\begin{align*}
y^{\prime \prime } x -y^{\prime } x +y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
2.585 |
|
| 19110 |
\begin{align*}
\left (x +a \right ) y^{\prime }+b \,x^{2}+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| 19111 |
\begin{align*}
y^{\prime } x&=2 x +3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| 19112 |
\begin{align*}
2 x -3 y+4+3 \left (x -1\right ) y^{\prime }&=0 \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| 19113 |
\begin{align*}
b \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.587 |
|
| 19114 |
\begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.587 |
|
| 19115 |
\begin{align*}
q^{\prime }&=\frac {p \,{\mathrm e}^{p^{2}-q^{2}}}{q} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.587 |
|
| 19116 |
\begin{align*}
y^{\prime }&=a +b \,{\mathrm e}^{k x}+c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 19117 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 19118 | \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +f \left (x \right ) y&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 2.588 |
|
| 19119 |
\begin{align*}
y^{\prime }&=\frac {1+y}{t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.588 |
|
| 19120 |
\begin{align*}
y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| 19121 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| 19122 |
\begin{align*}
x^{3} y^{\prime }-y^{2}-x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| 19123 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+\left (x +a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.589 |
|
| 19124 |
\begin{align*}
-y+y^{\prime } x&=2 x^{2} y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| 19125 |
\begin{align*}
y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.590 |
|
| 19126 |
\begin{align*}
y^{\prime }&=\frac {x \left ({\mathrm e}^{-2 x^{2}} x^{4}-4 x^{2} {\mathrm e}^{-x^{2}} y-4 x^{2} {\mathrm e}^{-x^{2}}+4 y^{2}+4 \,{\mathrm e}^{-x^{2}}\right )}{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| 19127 |
\begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| 19128 |
\begin{align*}
\left (\sin \left (y\right )-x \right ) y^{\prime }&=2 x +y \\
y \left (1\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.590 |
|
| 19129 |
\begin{align*}
y^{\prime }&=\frac {\cos \left (x \right )}{\sin \left (y\right )} \\
y \left (\pi \right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.592 |
|
| 19130 |
\begin{align*}
y^{\prime }&=-\frac {y-2}{x -2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.592 |
|
| 19131 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime }-2 y x&=x \left (x^{2}-1\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.593 |
|
| 19132 |
\begin{align*}
\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.595 |
|
| 19133 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.596 |
|
| 19134 |
\begin{align*}
y^{\prime \prime }&=k^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.597 |
|
| 19135 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.597 |
|
| 19136 |
\begin{align*}
\sin \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.598 |
|
| 19137 |
\begin{align*}
x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.598 |
|
| 19138 | \begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.598 |
|
| 19139 |
\begin{align*}
y^{\prime }&=3 y+2 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.598 |
|
| 19140 |
\begin{align*}
y^{\prime }+1-x&=y \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.599 |
|
| 19141 |
\begin{align*}
y^{\prime \prime }+36 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.599 |
|
| 19142 |
\begin{align*}
\frac {y^{\prime }}{x^{2}+1}&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.600 |
|
| 19143 |
\begin{align*}
y^{\prime }&=\sin \left (2 x \right )+\tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.601 |
|
| 19144 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| 19145 |
\begin{align*}
y^{\prime } x -y \ln \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| 19146 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
2.602 |
|
| 19147 |
\begin{align*}
y^{\prime } x -y^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.603 |
|
| 19148 |
\begin{align*}
x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.603 |
|
| 19149 |
\begin{align*}
\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 19150 |
\begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 19151 |
\begin{align*}
y^{\prime }&=\sin \left (t \right ) y+4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| 19152 |
\begin{align*}
y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )-y \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| 19153 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (1-2 x \right ) y^{\prime }-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.607 |
|
| 19154 |
\begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.608 |
|
| 19155 |
\begin{align*}
y^{\prime }-\frac {3 y}{2 x}&=6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| 19156 |
\begin{align*}
y^{\prime }&=\left (\tan \left (x \right )+y^{3} \sec \left (x \right )\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| 19157 | \begin{align*}
3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.608 |
|
| 19158 |
\begin{align*}
4 y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| 19159 |
\begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=\lambda x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✓ |
✓ |
2.608 |
|
| 19160 |
\begin{align*}
-a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.611 |
|
| 19161 |
\begin{align*}
y^{\prime }&=\left (3 x -y\right )^{{1}/{3}}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.611 |
|
| 19162 |
\begin{align*}
2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.612 |
|
| 19163 |
\begin{align*}
{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 19164 |
\begin{align*}
\cos \left (y\right ) \sin \left (x \right )&=\cos \left (x \right ) \sin \left (y\right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 19165 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 19166 |
\begin{align*}
r^{\prime }&=\frac {r^{2}}{\theta } \\
r \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| 19167 |
\begin{align*}
\left (x +1\right ) \left (x -2\right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.613 |
|
| 19168 |
\begin{align*}
z^{\prime }+5 y-2 z&=x \\
y^{\prime }+4 y+z&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.614 |
|
| 19169 |
\begin{align*}
y^{\prime }-2 y x&={\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 19170 |
\begin{align*}
\cos \left (y\right ) \sin \left (x \right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 19171 |
\begin{align*}
x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 19172 |
\begin{align*}
\left (x^{n}+a \right )^{2} y^{\prime \prime }+b \,x^{m} \left (x^{n}+a \right ) y^{\prime }-x^{-2+n} \left (b \,x^{m +1}+a n -a \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
2.615 |
|
| 19173 |
\begin{align*}
y^{\prime }&=y x \\
y \left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.615 |
|
| 19174 |
\begin{align*}
y^{\prime }&=y^{3} \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.617 |
|
| 19175 |
\begin{align*}
y^{\prime }-4 y&=2 x y^{2} \\
y \left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.618 |
|
| 19176 |
\begin{align*}
y^{\prime }&=\left (t +1\right ) y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.618 |
|
| 19177 | \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.620 |
|
| 19178 |
\begin{align*}
y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.621 |
|
| 19179 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.621 |
|
| 19180 |
\begin{align*}
y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.622 |
|
| 19181 |
\begin{align*}
\left (a_{2} x +b_{2} \right ) \left (y^{\prime }+\lambda y^{2}\right )+a_{0} x +b_{0}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.622 |
|
| 19182 |
\begin{align*}
y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.622 |
|
| 19183 |
\begin{align*}
y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.622 |
|
| 19184 |
\begin{align*}
\left (3+6 y x +x^{2}\right ) y^{\prime }+2 x +2 y x +3 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.623 |
|
| 19185 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.623 |
|
| 19186 |
\begin{align*}
y^{\prime }&=-1-\frac {x}{2}+\frac {\sqrt {x^{2}+4 x +4 y}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.625 |
|
| 19187 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.625 |
|
| 19188 |
\begin{align*}
y^{\prime }&=-2 t y+4 \,{\mathrm e}^{-t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.625 |
|
| 19189 |
\begin{align*}
\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.626 |
|
| 19190 |
\begin{align*}
x^{2} y^{3}+2 x y^{2}+y+\left (x^{3} y^{2}-2 x^{2} y+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.626 |
|
| 19191 |
\begin{align*}
x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.627 |
|
| 19192 |
\begin{align*}
y^{\prime }&=6 x y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| 19193 |
\begin{align*}
\left (x +y\right ) y^{\prime }+\tan \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| 19194 |
\begin{align*}
x^{3}+\left (1+y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| 19195 |
\begin{align*}
y^{\prime }&=\cos \left (x \right ) \sin \left (x \right )+y \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.629 |
|
| 19196 | \begin{align*}
y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{-\sin \left (x \right )} \\
y \left (\pi \right ) &= \pi \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.631 |
|
| 19197 |
\begin{align*}
2 y^{\prime } x&=\left (2 x^{2}-y^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.632 |
|
| 19198 |
\begin{align*}
L y^{\prime }+R y&=E \sin \left (\omega x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.632 |
|
| 19199 |
\begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
2.632 |
|
| 19200 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=x \left (3+3 x^{2}-y\right ) \\
y \left (2\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.632 |
|