| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 18101 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}-9} \\
y \left (5\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.154 |
|
| 18102 |
\begin{align*}
\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18103 |
\begin{align*}
y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.155 |
|
| 18104 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18105 |
\begin{align*}
y^{\prime }&=\tan \left (t \right ) y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18106 |
\begin{align*}
\sqrt {t^{2}+1}+y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18107 |
\begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18108 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.155 |
|
| 18109 |
\begin{align*}
n y+\left (1-x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.156 |
|
| 18110 |
\begin{align*}
\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.156 |
|
| 18111 |
\begin{align*}
r r^{\prime }&=a \\
r \left (0\right ) &= b \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
2.156 |
|
| 18112 |
\begin{align*}
L i^{\prime }+R i&=e \sin \left (t w \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.157 |
|
| 18113 |
\begin{align*}
y^{\prime }-\sqrt {3}\, y&=\sin \left (t \right )+\cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.157 |
|
| 18114 |
\begin{align*}
y^{\prime }&=-\tan \left (t \right ) y+\sec \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| 18115 |
\begin{align*}
2 \sqrt {a y^{\prime }}+y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| 18116 |
\begin{align*}
y^{\prime } x&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| 18117 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| 18118 | \begin{align*}
a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 2.159 |
|
| 18119 |
\begin{align*}
3 y+y^{\prime }&=\cos \left (2 t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.159 |
|
| 18120 |
\begin{align*}
\frac {\sqrt {x}\, y^{\prime }}{y}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.159 |
|
| 18121 |
\begin{align*}
x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.160 |
|
| 18122 |
\begin{align*}
2 x +\frac {y}{x}+\left (y x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.160 |
|
| 18123 |
\begin{align*}
w^{3}+w z^{2}-z+\left (z^{3}+w^{2} z-w \right ) z^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.160 |
|
| 18124 |
\begin{align*}
t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.161 |
|
| 18125 |
\begin{align*}
a k \,x^{-1+k} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.161 |
|
| 18126 |
\begin{align*}
y^{\prime } \cos \left (y\right )+\sin \left (y\right )&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.161 |
|
| 18127 |
\begin{align*}
x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x&=1-\operatorname {Heaviside}\left (t -5\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.161 |
|
| 18128 |
\begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.162 |
|
| 18129 |
\begin{align*}
y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.163 |
|
| 18130 |
\begin{align*}
y^{\prime } y&=x -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.164 |
|
| 18131 |
\begin{align*}
x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.164 |
|
| 18132 |
\begin{align*}
y^{\prime }-4 y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.164 |
|
| 18133 |
\begin{align*}
y^{\prime }&=\sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| 18134 |
\begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| 18135 |
\begin{align*}
y^{\prime } y-\sqrt {a y^{2}+b}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| 18136 |
\begin{align*}
y^{\prime }&=y^{2}+a \,x^{n} y+b \,x^{n -1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.165 |
|
| 18137 | \begin{align*}
2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\
y \left (1\right ) &= -3 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.165 |
|
| 18138 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.165 |
|
| 18139 |
\begin{align*}
x \left (6 y x +5\right )+\left (2 x^{3}+3 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.167 |
|
| 18140 |
\begin{align*}
y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.167 |
|
| 18141 |
\begin{align*}
y^{\prime }&=y+3 y^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.167 |
|
| 18142 |
\begin{align*}
\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.167 |
|
| 18143 |
\begin{align*}
w^{\prime }&=\frac {w}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.168 |
|
| 18144 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.169 |
|
| 18145 |
\begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.169 |
|
| 18146 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.169 |
|
| 18147 |
\begin{align*}
y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.170 |
|
| 18148 |
\begin{align*}
y&=y^{\prime } x \left (1+y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| 18149 |
\begin{align*}
a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (-a +1\right )+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
2.171 |
|
| 18150 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| 18151 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.171 |
|
| 18152 |
\begin{align*}
y^{\prime }-2 y x&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| 18153 |
\begin{align*}
y+\left (-a +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
2.172 |
|
| 18154 |
\begin{align*}
\sin \left (\theta \right ) r^{\prime }&=-1-2 r \cos \left (\theta \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.172 |
|
| 18155 |
\begin{align*}
y^{\prime \prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.173 |
|
| 18156 | \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.173 |
|
| 18157 |
\begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| 18158 |
\begin{align*}
x^{\prime }&={\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| 18159 |
\begin{align*}
y^{\prime }&=\frac {2 \cos \left (2 x \right )}{10+2 y} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| 18160 |
\begin{align*}
{y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.175 |
|
| 18161 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.177 |
|
| 18162 |
\begin{align*}
y^{\prime } x -3 y&=x^{3} \\
y \left (1\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.177 |
|
| 18163 |
\begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18164 |
\begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18165 |
\begin{align*}
y^{\prime } x&=a +b \,x^{n}+c y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.178 |
|
| 18166 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18167 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18168 |
\begin{align*}
y^{\prime }&=y x -3 x -2 y+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18169 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| 18170 |
\begin{align*}
y^{\prime }-\frac {y}{2 x \ln \left (x \right )}&=2 x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| 18171 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| 18172 |
\begin{align*}
m y^{\prime \prime }+k y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| 18173 |
\begin{align*}
y-y^{\prime } x&=y^{\prime } y^{2} {\mathrm e}^{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| 18174 |
\begin{align*}
y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| 18175 | \begin{align*}
\sin \left (x \right )+y^{\prime } y&=0 \\
y \left (0\right ) &= -2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 2.180 |
|
| 18176 |
\begin{align*}
\left (x +a \right ) y^{\prime }&=b x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| 18177 |
\begin{align*}
x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| 18178 |
\begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| 18179 |
\begin{align*}
4 y+y^{\prime } x&=x^{3}-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| 18180 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| 18181 |
\begin{align*}
y^{\prime }+\frac {3 y}{x}&=6 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| 18182 |
\begin{align*}
y-x^{5} y^{4}+\left (x -x^{4} y^{5}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.181 |
|
| 18183 |
\begin{align*}
\cos \left (x \right ) y^{\prime }-2 y \sin \left (x \right )+3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.182 |
|
| 18184 |
\begin{align*}
x^{2} \sin \left (x \right )+4 y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.183 |
|
| 18185 |
\begin{align*}
y^{\prime } x&=\left (-4 x^{2}+1\right ) \tan \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.183 |
|
| 18186 |
\begin{align*}
r^{\prime }+r \tan \left (t \right )&=\cos \left (t \right )^{2} \\
r \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.183 |
|
| 18187 |
\begin{align*}
3 \sin \left (x \right )-4 y^{\prime } \cos \left (y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.183 |
|
| 18188 |
\begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {4}{\left (x^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| 18189 |
\begin{align*}
y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| 18190 |
\begin{align*}
y^{\prime }&=t +\frac {2 y}{t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| 18191 |
\begin{align*}
\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y&=\frac {1}{t +2} \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.184 |
|
| 18192 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| 18193 |
\begin{align*}
\left (y-1\right )^{2} y^{\prime }&=2 x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.185 |
|
| 18194 | \begin{align*}
y^{\prime } x +x^{2}+y^{2}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 2.185 |
|
| 18195 |
\begin{align*}
y+2 x -y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.185 |
|
| 18196 |
\begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
2.185 |
|
| 18197 |
\begin{align*}
y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.185 |
|
| 18198 |
\begin{align*}
\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.186 |
|
| 18199 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
2.186 |
|
| 18200 |
\begin{align*}
\sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\
y \left (-2\right ) &= 3 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
2.187 |
|