2.3.182 Problems 18101 to 18200

Table 2.895: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

18101

25716

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (5\right ) &= 3 \\ \end{align*}

2.154

18102

56

\begin{align*} \left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\ \end{align*}

2.155

18103

4414

\begin{align*} y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

2.155

18104

8540

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

2.155

18105

17043

\begin{align*} y^{\prime }&=\tan \left (t \right ) y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.155

18106

17266

\begin{align*} \sqrt {t^{2}+1}+y y^{\prime }&=0 \\ \end{align*}

2.155

18107

25705

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

2.155

18108

25721

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

2.155

18109

5911

\begin{align*} n y+\left (1-x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.156

18110

7038

\begin{align*} \left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x&=0 \\ \end{align*}

2.156

18111

23059

\begin{align*} r r^{\prime }&=a \\ r \left (0\right ) &= b \\ \end{align*}

2.156

18112

24264

\begin{align*} L i^{\prime }+R i&=e \sin \left (t w \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}

2.157

18113

25451

\begin{align*} y^{\prime }-\sqrt {3}\, y&=\sin \left (t \right )+\cos \left (t \right ) \\ \end{align*}

2.157

18114

3449

\begin{align*} y^{\prime }&=-\tan \left (t \right ) y+\sec \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

2.158

18115

5682

\begin{align*} 2 \sqrt {a y^{\prime }}+y^{\prime } x -y&=0 \\ \end{align*}

2.158

18116

8342

\begin{align*} y^{\prime } x&=4 y \\ \end{align*}

2.158

18117

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

2.158

18118

12876

\begin{align*} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\ \end{align*}

2.159

18119

15908

\begin{align*} 3 y+y^{\prime }&=\cos \left (2 t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

2.159

18120

18621

\begin{align*} \frac {\sqrt {x}\, y^{\prime }}{y}&=1 \\ \end{align*}

2.159

18121

4337

\begin{align*} x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime }&=0 \\ \end{align*}

2.160

18122

7473

\begin{align*} 2 x +\frac {y}{x}+\left (y x -1\right ) y^{\prime }&=0 \\ \end{align*}

2.160

18123

24192

\begin{align*} w^{3}+w z^{2}-z+\left (z^{3}+w^{2} z-w \right ) z^{\prime }&=0 \\ \end{align*}

2.160

18124

2311

\begin{align*} t y+\left (t^{2}+1\right ) y^{\prime }&=\left (t^{2}+1\right )^{{5}/{2}} \\ \end{align*}

2.161

18125

5881

\begin{align*} a k \,x^{-1+k} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime }&=0 \\ \end{align*}

2.161

18126

6991

\begin{align*} y^{\prime } \cos \left (y\right )+\sin \left (y\right )&=x^{2} \\ \end{align*}

2.161

18127

14357

\begin{align*} x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x&=1-\operatorname {Heaviside}\left (t -5\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.161

18128

7508

\begin{align*} y^{\prime }&=\sin \left (x -y\right ) \\ \end{align*}

2.162

18129

2540

\begin{align*} y^{\prime }&={\mathrm e}^{t} y^{2}-2 y \\ y \left (0\right ) &= 1 \\ \end{align*}

2.163

18130

33

\begin{align*} y^{\prime } y&=x -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

2.164

18131

7711

\begin{align*} x^{2} \left (1+y\right )+y^{2} \left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

2.164

18132

17473

\begin{align*} y^{\prime }-4 y&=t^{2} \\ \end{align*}

2.164

18133

3538

\begin{align*} y^{\prime }&=\sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \\ \end{align*}

2.165

18134

8176

\begin{align*} 2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\ \end{align*}

2.165

18135

11507

\begin{align*} y^{\prime } y-\sqrt {a y^{2}+b}&=0 \\ \end{align*}

2.165

18136

13230

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y+b \,x^{n -1} \\ \end{align*}

2.165

18137

18549

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \\ y \left (1\right ) &= -3 \\ \end{align*}

2.165

18138

21615

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

2.165

18139

2916

\begin{align*} x \left (6 y x +5\right )+\left (2 x^{3}+3 y\right ) y^{\prime }&=0 \\ \end{align*}

2.167

18140

5707

\begin{align*} y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

2.167

18141

17839

\begin{align*} y^{\prime }&=y+3 y^{{1}/{3}} \\ \end{align*}

2.167

18142

19159

\begin{align*} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\ \end{align*}

2.167

18143

15793

\begin{align*} w^{\prime }&=\frac {w}{t} \\ \end{align*}

2.168

18144

13988

\begin{align*} y^{\prime } x +\left (x +1\right ) y&={\mathrm e}^{x} \\ \end{align*}

2.169

18145

20677

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

2.169

18146

25216

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

2.169

18147

785

\begin{align*} y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\ \end{align*}

2.170

18148

3317

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

2.171

18149

5527

\begin{align*} a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (-a +1\right )+y^{2}&=0 \\ \end{align*}

2.171

18150

8316

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{y} \\ y \left (1\right ) &= {\frac {5}{2}} \\ \end{align*}

2.171

18151

12489

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y&=0 \\ \end{align*}

2.171

18152

25754

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x} \\ \end{align*}

2.171

18153

5902

\begin{align*} y+\left (-a +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

2.172

18154

24276

\begin{align*} \sin \left (\theta \right ) r^{\prime }&=-1-2 r \cos \left (\theta \right ) \\ \end{align*}

2.172

18155

13662

\begin{align*} y^{\prime \prime }+a y&=0 \\ \end{align*}

2.173

18156

22484

\begin{align*} y^{\prime } y^{\prime \prime }&=1 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

2.173

18157

131

\begin{align*} 3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\ \end{align*}

2.174

18158

14217

\begin{align*} x^{\prime }&={\mathrm e}^{x^{2}} \\ \end{align*}

2.174

18159

18505

\begin{align*} y^{\prime }&=\frac {2 \cos \left (2 x \right )}{10+2 y} \\ y \left (0\right ) &= -1 \\ \end{align*}

2.174

18160

5375

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \\ \end{align*}

2.175

18161

49

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=2 y \\ \end{align*}

2.177

18162

717

\begin{align*} y^{\prime } x -3 y&=x^{3} \\ y \left (1\right ) &= 10 \\ \end{align*}

2.177

18163

755

\begin{align*} 3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\ \end{align*}

2.178

18164

1504

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+u&=\frac {\operatorname {Heaviside}\left (t -\frac {3}{2}\right )}{2}-\frac {\operatorname {Heaviside}\left (t -\frac {5}{2}\right )}{2} \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

2.178

18165

4765

\begin{align*} y^{\prime } x&=a +b \,x^{n}+c y \\ \end{align*}

2.178

18166

12417

\begin{align*} x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y&=0 \\ \end{align*}

2.178

18167

15397

\begin{align*} y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\ \end{align*}

2.178

18168

16235

\begin{align*} y^{\prime }&=y x -3 x -2 y+6 \\ \end{align*}

2.178

18169

19704

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y&=0 \\ \end{align*}

2.178

18170

3665

\begin{align*} y^{\prime }-\frac {y}{2 x \ln \left (x \right )}&=2 x y^{3} \\ \end{align*}

2.179

18171

4736

\begin{align*} y^{\prime }&={\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \\ \end{align*}

2.179

18172

7570

\begin{align*} m y^{\prime \prime }+k y&=0 \\ \end{align*}

2.179

18173

9121

\begin{align*} y-y^{\prime } x&=y^{\prime } y^{2} {\mathrm e}^{y} \\ \end{align*}

2.179

18174

17154

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

2.180

18175

22002

\begin{align*} \sin \left (x \right )+y^{\prime } y&=0 \\ y \left (0\right ) &= -2 \\ \end{align*}

2.180

18176

24260

\begin{align*} \left (x +a \right ) y^{\prime }&=b x +y \\ \end{align*}

2.180

18177

3645

\begin{align*} x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\ \end{align*}

2.181

18178

7389

\begin{align*} y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\ \end{align*}

2.181

18179

8430

\begin{align*} 4 y+y^{\prime } x&=x^{3}-x \\ \end{align*}

2.181

18180

11726

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

2.181

18181

14481

\begin{align*} y^{\prime }+\frac {3 y}{x}&=6 x^{2} \\ \end{align*}

2.181

18182

22471

\begin{align*} y-x^{5} y^{4}+\left (x -x^{4} y^{5}\right ) y^{\prime }&=0 \\ \end{align*}

2.181

18183

22427

\begin{align*} \cos \left (x \right ) y^{\prime }-2 y \sin \left (x \right )+3&=0 \\ \end{align*}

2.182

18184

7477

\begin{align*} x^{2} \sin \left (x \right )+4 y+y^{\prime } x&=0 \\ \end{align*}

2.183

18185

9087

\begin{align*} y^{\prime } x&=\left (-4 x^{2}+1\right ) \tan \left (y\right ) \\ \end{align*}

2.183

18186

14503

\begin{align*} r^{\prime }+r \tan \left (t \right )&=\cos \left (t \right )^{2} \\ r \left (\frac {\pi }{4}\right ) &= 1 \\ \end{align*}

2.183

18187

17077

\begin{align*} 3 \sin \left (x \right )-4 y^{\prime } \cos \left (y\right )&=0 \\ \end{align*}

2.183

18188

3533

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {4}{\left (x^{2}+1\right )^{2}} \\ \end{align*}

2.184

18189

15613

\begin{align*} y^{\prime }&=\frac {y}{-x^{2}+1}+\sqrt {x} \\ \end{align*}

2.184

18190

15950

\begin{align*} y^{\prime }&=t +\frac {2 y}{t +1} \\ \end{align*}

2.184

18191

17058

\begin{align*} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y&=\frac {1}{t +2} \\ y \left (0\right ) &= 3 \\ \end{align*}

2.184

18192

19785

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

2.184

18193

1586

\begin{align*} \left (y-1\right )^{2} y^{\prime }&=2 x +3 \\ \end{align*}

2.185

18194

4772

\begin{align*} y^{\prime } x +x^{2}+y^{2}&=0 \\ \end{align*}

2.185

18195

7342

\begin{align*} y+2 x -y^{\prime } x&=0 \\ \end{align*}

2.185

18196

15584

\begin{align*} y^{\prime }&=\frac {y}{x} \\ y \left (-1\right ) &= 2 \\ \end{align*}

2.185

18197

21446

\begin{align*} y^{\prime }&=\frac {2 y x}{y^{2}-x^{2}} \\ \end{align*}

2.185

18198

770

\begin{align*} \frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}}&=0 \\ \end{align*}

2.186

18199

14119

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y&=x \\ \end{align*}

2.186

18200

15657

\begin{align*} \sqrt {1-x}\, y^{\prime \prime }-4 y&=\sin \left (x \right ) \\ y \left (-2\right ) &= 3 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

2.187