2.3.173 Problems 17201 to 17300

Table 2.877: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

17201

16138

\begin{align*} y^{\prime \prime }+4 y^{\prime }+9 y&=20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

1.832

17202

17146

\begin{align*} y^{\prime } x +y&={\mathrm e}^{-x} \\ \end{align*}

1.832

17203

17240

\begin{align*} y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

1.832

17204

4771

\begin{align*} y^{\prime } x +\left (-a \,x^{2}+2\right ) y&=0 \\ \end{align*}

1.833

17205

18562

\begin{align*} y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

1.833

17206

18565

\begin{align*} y^{\prime }&=-y \left (3-t y\right ) \\ \end{align*}

1.833

17207

29

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.834

17208

4911

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\tan \left (x \right )-2 y x \\ \end{align*}

1.834

17209

7025

\begin{align*} \left (1+x^{2}+y^{2}\right ) y^{\prime }+2 y x +x^{2}+3&=0 \\ \end{align*}

1.834

17210

12376

\begin{align*} y^{\prime \prime } x -y^{\prime } x -a y&=0 \\ \end{align*}

1.835

17211

14274

\begin{align*} t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime }&=0 \\ \end{align*}

1.835

17212

14691

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\ \end{align*}

1.835

17213

19524

\begin{align*} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y&=x \left (x +1\right )^{2} \\ \end{align*}

1.835

17214

21171

\begin{align*} t^{2} x^{\prime \prime }-t x^{\prime }-3 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.835

17215

25495

\begin{align*} y^{\prime }&=\frac {y}{t} \\ \end{align*}

1.835

17216

18539

\begin{align*} -y+y^{\prime }&=1+3 \sin \left (t \right ) \\ y \left (0\right ) &= y_{0} \\ \end{align*}

1.837

17217

25606

\begin{align*} -y+y^{\prime }&={\mathrm e}^{t} t \\ \end{align*}

1.837

17218

4728

\begin{align*} y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\ \end{align*}

1.838

17219

7363

\begin{align*} y^{\prime }&=3 x^{2} y \\ \end{align*}

1.838

17220

7384

\begin{align*} \left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\ \end{align*}

1.838

17221

7680

\begin{align*} y^{\prime }+\frac {y}{1-x}+x -x^{2}&=0 \\ \end{align*}

1.838

17222

13106

\begin{align*} a x^{\prime }&=b c \left (y-z\right ) \\ b y^{\prime }&=c a \left (z-x\right ) \\ c z^{\prime }&=a b \left (x-y\right ) \\ \end{align*}

1.838

17223

18847

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\ \end{align*}

1.838

17224

23237

\begin{align*} y^{\prime \prime }&=y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

1.838

17225

218

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= -10 \\ \end{align*}

1.839

17226

2068

\begin{align*} 4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.839

17227

17190

\begin{align*} \frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

1.839

17228

22524

\begin{align*} y^{\prime }&=\frac {2 y x -y^{4}}{3 x^{2}} \\ \end{align*}

1.840

17229

25039

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= -1 \\ \end{align*}

1.840

17230

23300

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\ \end{align*}

1.841

17231

25208

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= -1 \\ y^{\prime }\left (1\right ) &= 3 \\ \end{align*}

1.841

17232

8611

\begin{align*} y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.842

17233

14488

\begin{align*} \left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y&=x -1 \\ \end{align*}

1.842

17234

16359

\begin{align*} \ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime }&=0 \\ \end{align*}

1.842

17235

3280

\begin{align*} 2 y y^{\prime \prime }&=y^{3}+2 {y^{\prime }}^{2} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.843

17236

5175

\begin{align*} 3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right )&=0 \\ \end{align*}

1.843

17237

15906

\begin{align*} -2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 10 \\ \end{align*}

1.843

17238

16263

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

1.843

17239

19487

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

1.843

17240

19484

\begin{align*} 2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\ \end{align*}

1.844

17241

1098

\begin{align*} 3 y+y^{\prime }&={\mathrm e}^{-2 t}+t \\ \end{align*}

1.845

17242

15905

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{\frac {t}{3}} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.845

17243

1551

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \\ \end{align*}

1.846

17244

4641

\begin{align*} y^{\prime }&=\sec \left (x \right )-\tan \left (x \right ) y \\ \end{align*}

1.846

17245

7069

\begin{align*} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

1.846

17246

14903

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=5 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

1.847

17247

22210

\begin{align*} x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x +\left (x^{3}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.847

17248

1179

\begin{align*} y^{\prime }&=y \left (3-t y\right ) \\ \end{align*}

1.848

17249

17191

\begin{align*} -\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

1.848

17250

19089

\begin{align*} y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\ \end{align*}

1.848

17251

23667

\begin{align*} y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.848

17252

24149

\begin{align*} v v^{\prime }&=g \\ v \left (x_{0} \right ) &= v_{0} \\ \end{align*}

1.848

17253

18552

\begin{align*} y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\ \end{align*}

1.849

17254

15023

\begin{align*} x^{\prime }&=x+\sin \left (t \right ) \\ \end{align*}

1.850

17255

15354

\begin{align*} t -s+t s^{\prime }&=0 \\ \end{align*}

1.850

17256

17174

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\ \end{align*}

1.850

17257

25498

\begin{align*} y^{\prime }&={\mathrm e}^{t +y} \\ \end{align*}

1.850

17258

3219

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

1.851

17259

8547

\begin{align*} y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.851

17260

15659

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

1.851

17261

18102

\begin{align*} y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

1.851

17262

183

\begin{align*} 3 y+x^{4} y^{\prime }&=2 y x \\ \end{align*}

1.852

17263

1722

\begin{align*} -y+\left (x^{4}-x \right ) y^{\prime }&=0 \\ \end{align*}

1.852

17264

4725

\begin{align*} y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right )&=0 \\ \end{align*}

1.852

17265

4924

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \\ \end{align*}

1.852

17266

14114

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\ \end{align*}

1.852

17267

15359

\begin{align*} x +2 y+1-\left (2 x -3\right ) y^{\prime }&=0 \\ \end{align*}

1.852

17268

15559

\begin{align*} y^{\prime }+3 y&=1 \\ y \left (-2\right ) &= 1 \\ \end{align*}

1.852

17269

23018

\begin{align*} x^{\prime \prime }+36 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi }{12}\right ) &= 7 \\ \end{align*}

1.852

17270

6386

\begin{align*} y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

1.853

17271

8222

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.853

17272

18528

\begin{align*} 4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\ y \left (-1\right ) &= 0 \\ \end{align*}

1.853

17273

25207

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.854

17274

2458

\begin{align*} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

1.855

17275

4093

\begin{align*} x^{2}+x -1+\left (2 y x +y\right ) y^{\prime }&=0 \\ \end{align*}

1.855

17276

20328

\begin{align*} y^{\prime \prime }-n^{2} y&=0 \\ \end{align*}

1.855

17277

22959

\begin{align*} y^{\prime } x +y&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

1.855

17278

2356

\begin{align*} y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.856

17279

2481

\begin{align*} y^{\prime }-2 t y&=t \\ y \left (0\right ) &= 1 \\ \end{align*}

1.856

17280

5159

\begin{align*} 2 x y^{\prime } y&=a x +y^{2} \\ \end{align*}

1.856

17281

21185

\begin{align*} x^{\prime \prime \prime }-3 x^{\prime }+k x&=0 \\ x \left (0\right ) &= 1 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

1.856

17282

24204

\begin{align*} 3 \left (x^{2}-1\right ) y+\left (x^{3}+8 y-3 x \right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.856

17283

25430

\begin{align*} y^{\prime }-a \left (t \right ) y&=0 \\ \end{align*}

1.857

17284

6154

\begin{align*} \left (4 k x -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.858

17285

9362

\begin{align*} x^{2} y^{\prime }&=y \\ \end{align*}

1.858

17286

13747

\begin{align*} y^{\prime \prime } x +\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y&=0 \\ \end{align*}

1.858

17287

20600

\begin{align*} 2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\ \end{align*}

1.858

17288

20954

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= {\frac {1}{4}} \\ \end{align*}

1.858

17289

1107

\begin{align*} -y+t y^{\prime }&={\mathrm e}^{-t} t^{2} \\ \end{align*}

1.859

17290

6817

\begin{align*} y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{2} \\ \end{align*}

1.859

17291

6975

\begin{align*} y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{2 x} \\ \end{align*}

1.859

17292

8307

\begin{align*} y^{\prime }&=x +y \\ y \left (-2\right ) &= 2 \\ \end{align*}

1.859

17293

14194

\begin{align*} x^{\prime }&=-x^{2} \\ \end{align*}

1.859

17294

15294

\begin{align*} x^{\prime }&=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }&=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }&=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ z \left (0\right ) &= 3 \\ \end{align*}

1.859

17295

17651

\begin{align*} 2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

1.859

17296

17812

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.859

17297

22379

\begin{align*} y^{\prime }&=1+\frac {y}{x} \\ \end{align*}

1.860

17298

679

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

1.861

17299

15116

\begin{align*} x^{2} y^{\prime }&=1+y^{2} \\ \end{align*}

1.861

17300

16317

\begin{align*} 2-2 x +3 y^{2} y^{\prime }&=0 \\ \end{align*}

1.861