| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 17201 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+9 y&=20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.832 |
|
| 17202 |
\begin{align*}
y^{\prime } x +y&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 17203 |
\begin{align*}
y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| 17204 |
\begin{align*}
y^{\prime } x +\left (-a \,x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| 17205 |
\begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
1.833 |
|
| 17206 |
\begin{align*}
y^{\prime }&=-y \left (3-t y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.833 |
|
| 17207 |
\begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.834 |
|
| 17208 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\tan \left (x \right )-2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.834 |
|
| 17209 |
\begin{align*}
\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 y x +x^{2}+3&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.834 |
|
| 17210 |
\begin{align*}
y^{\prime \prime } x -y^{\prime } x -a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.835 |
|
| 17211 |
\begin{align*}
t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.835 |
|
| 17212 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.835 |
|
| 17213 |
\begin{align*}
\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (2+x \right ) y&=x \left (x +1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.835 |
|
| 17214 |
\begin{align*}
t^{2} x^{\prime \prime }-t x^{\prime }-3 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| 17215 |
\begin{align*}
y^{\prime }&=\frac {y}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| 17216 |
\begin{align*}
-y+y^{\prime }&=1+3 \sin \left (t \right ) \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| 17217 |
\begin{align*}
-y+y^{\prime }&={\mathrm e}^{t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.837 |
|
| 17218 | \begin{align*}
y^{\prime }&=\sec \left (x \right )^{2} \sec \left (y\right )^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.838 |
|
| 17219 |
\begin{align*}
y^{\prime }&=3 x^{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17220 |
\begin{align*}
\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17221 |
\begin{align*}
y^{\prime }+\frac {y}{1-x}+x -x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17222 |
\begin{align*}
a x^{\prime }&=b c \left (y-z\right ) \\
b y^{\prime }&=c a \left (z-x\right ) \\
c z^{\prime }&=a b \left (x-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17223 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17224 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.838 |
|
| 17225 |
\begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 10 \\
y^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| 17226 |
\begin{align*}
4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (1+3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| 17227 |
\begin{align*}
\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| 17228 |
\begin{align*}
y^{\prime }&=\frac {2 y x -y^{4}}{3 x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| 17229 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| 17230 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.841 |
|
| 17231 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= -1 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| 17232 |
\begin{align*}
y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.842 |
|
| 17233 |
\begin{align*}
\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y&=x -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| 17234 |
\begin{align*}
\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| 17235 |
\begin{align*}
2 y y^{\prime \prime }&=y^{3}+2 {y^{\prime }}^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.843 |
|
| 17236 |
\begin{align*}
3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.843 |
|
| 17237 |
\begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.843 |
|
| 17238 | \begin{align*}
y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.843 |
|
| 17239 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.843 |
|
| 17240 |
\begin{align*}
2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.844 |
|
| 17241 |
\begin{align*}
3 y+y^{\prime }&={\mathrm e}^{-2 t}+t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.845 |
|
| 17242 |
\begin{align*}
y^{\prime }+2 y&={\mathrm e}^{\frac {t}{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.845 |
|
| 17243 |
\begin{align*}
y^{\prime }+\frac {2 x y}{x^{2}+1}&=\frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 17244 |
\begin{align*}
y^{\prime }&=\sec \left (x \right )-\tan \left (x \right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 17245 |
\begin{align*}
y^{\prime \prime }&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| 17246 |
\begin{align*}
y^{\prime }+2 \cot \left (x \right ) y&=5 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.847 |
|
| 17247 |
\begin{align*}
x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x +\left (x^{3}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.847 |
|
| 17248 |
\begin{align*}
y^{\prime }&=y \left (3-t y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| 17249 |
\begin{align*}
-\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| 17250 |
\begin{align*}
y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| 17251 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| 17252 |
\begin{align*}
v v^{\prime }&=g \\
v \left (x_{0} \right ) &= v_{0} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
1.848 |
|
| 17253 |
\begin{align*}
y^{\prime }&=\sqrt {1-t^{2}-y^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.849 |
|
| 17254 |
\begin{align*}
x^{\prime }&=x+\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| 17255 |
\begin{align*}
t -s+t s^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| 17256 |
\begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| 17257 |
\begin{align*}
y^{\prime }&={\mathrm e}^{t +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| 17258 | \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.851 |
|
| 17259 |
\begin{align*}
y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.851 |
|
| 17260 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| 17261 |
\begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.851 |
|
| 17262 |
\begin{align*}
3 y+x^{4} y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17263 |
\begin{align*}
-y+\left (x^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17264 |
\begin{align*}
y^{\prime }+\sin \left (2 x \right ) \csc \left (2 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17265 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17266 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17267 |
\begin{align*}
x +2 y+1-\left (2 x -3\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17268 |
\begin{align*}
y^{\prime }+3 y&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17269 |
\begin{align*}
x^{\prime \prime }+36 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi }{12}\right ) &= 7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| 17270 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| 17271 |
\begin{align*}
y^{\prime }&=3 y^{{2}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| 17272 |
\begin{align*}
4 t^{2} y+t^{3} y^{\prime }&={\mathrm e}^{-t} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.853 |
|
| 17273 |
\begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.854 |
|
| 17274 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 17275 |
\begin{align*}
x^{2}+x -1+\left (2 y x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 17276 |
\begin{align*}
y^{\prime \prime }-n^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| 17277 | \begin{align*}
y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.855 |
|
| 17278 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.856 |
|
| 17279 |
\begin{align*}
y^{\prime }-2 t y&=t \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 17280 |
\begin{align*}
2 x y^{\prime } y&=a x +y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 17281 |
\begin{align*}
x^{\prime \prime \prime }-3 x^{\prime }+k x&=0 \\
x \left (0\right ) &= 1 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.856 |
|
| 17282 |
\begin{align*}
3 \left (x^{2}-1\right ) y+\left (x^{3}+8 y-3 x \right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| 17283 |
\begin{align*}
y^{\prime }-a \left (t \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.857 |
|
| 17284 |
\begin{align*}
\left (4 k x -4 p^{2}-x^{2}+1\right ) y+4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.858 |
|
| 17285 |
\begin{align*}
x^{2} y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.858 |
|
| 17286 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.858 |
|
| 17287 |
\begin{align*}
2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.858 |
|
| 17288 |
\begin{align*}
y^{\prime }&=y-y^{2} \\
y \left (0\right ) &= {\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.858 |
|
| 17289 |
\begin{align*}
-y+t y^{\prime }&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17290 |
\begin{align*}
y^{\prime }-\frac {2 y}{x +1}&=\left (x +1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17291 |
\begin{align*}
y^{\prime }+y \cos \left (x \right )&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17292 |
\begin{align*}
y^{\prime }&=x +y \\
y \left (-2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17293 |
\begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17294 |
\begin{align*}
x^{\prime }&=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\
y^{\prime }&=4 x-y+2 z+4 \,{\mathrm e}^{t} \\
z^{\prime }&=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
z \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17295 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17296 |
\begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| 17297 | \begin{align*}
y^{\prime }&=1+\frac {y}{x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.860 |
|
| 17298 |
\begin{align*}
y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| 17299 |
\begin{align*}
x^{2} y^{\prime }&=1+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| 17300 |
\begin{align*}
2-2 x +3 y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.861 |
|