2.3.170 Problems 16901 to 17000

Table 2.871: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16901

24250

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }+2 y&=\left (x^{2}+1\right )^{3} \\ \end{align*}

1.733

16902

2093

\begin{align*} 4 x^{2} y^{\prime \prime }+2 x \left (x^{2}+8\right ) y^{\prime }+\left (3 x^{2}+5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.734

16903

5079

\begin{align*} 2 y^{\prime } y&=x y^{2}+x^{3} \\ \end{align*}

1.734

16904

5831

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

1.734

16905

11449

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x -2 x^{2}&=0 \\ \end{align*}

1.734

16906

15383

\begin{align*} 6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.734

16907

22326

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=0 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

1.734

16908

19467

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

1.735

16909

20426

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}&=x^{2} \\ \end{align*}

1.735

16910

22050

\begin{align*} y+3 y^{\prime } x&=0 \\ \end{align*}

1.736

16911

1560

\begin{align*} x^{2} y^{\prime }+3 y x&={\mathrm e}^{x} \\ \end{align*}

1.737

16912

8453

\begin{align*} x \left (x +1\right ) y^{\prime }+y x&=1 \\ y \left ({\mathrm e}\right ) &= 1 \\ \end{align*}

1.737

16913

9097

\begin{align*} \left (1+y\right ) y^{\prime }&=-x^{2}+1 \\ y \left (-1\right ) &= -2 \\ \end{align*}

1.737

16914

8686

\begin{align*} y^{\prime }&=\cos \left (x -y-1\right ) \\ \end{align*}

1.739

16915

23453

\begin{align*} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.739

16916

1719

\begin{align*} y^{2}+\left (x y^{2}+6 y x +\frac {1}{y}\right ) y^{\prime }&=0 \\ \end{align*}

1.740

16917

2318

\begin{align*} y^{\prime }&=\left (t +1\right ) \left (1+y\right ) \\ \end{align*}

1.740

16918

17640

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +36 y&=x^{2} \\ \end{align*}

1.740

16919

24184

\begin{align*} 6 x +y^{2}+y \left (2 x -3 y\right ) y^{\prime }&=0 \\ \end{align*}

1.740

16920

24185

\begin{align*} 2 y x -3 x^{2}+\left (y+x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.740

16921

102

\begin{align*} 2 y^{\prime } x&=y+2 \cos \left (x \right ) x \\ y \left (1\right ) &= 0 \\ \end{align*}

1.741

16922

138

\begin{align*} 2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

1.741

16923

4338

\begin{align*} y^{2}+\left (y x +y^{2}-1\right ) y^{\prime }&=0 \\ \end{align*}

1.742

16924

6215

\begin{align*} -\left (x +1\right )^{3} y+y^{\prime } x +x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.742

16925

13245

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+b y+c \,x^{m} \\ \end{align*}

1.742

16926

17786

\begin{align*} x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=8 x \\ \end{align*}

1.742

16927

8427

\begin{align*} y^{\prime }&=2 y+x^{2}+5 \\ \end{align*}

1.743

16928

15531

\begin{align*} y^{\prime }&=-y x \\ \end{align*}

1.743

16929

15537

\begin{align*} y^{\prime }&=\frac {y}{x} \\ \end{align*}

1.743

16930

17194

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.743

16931

22950

\begin{align*} y^{\prime } \sin \left (y\right )&=\sec \left (x \right )^{2} \\ \end{align*}

1.743

16932

1221

\begin{align*} y^{\prime }&=3-6 x +y-2 y x \\ \end{align*}

1.744

16933

14457

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+4 y x&=0 \\ \end{align*}

1.744

16934

21557

\begin{align*} y^{\prime \prime } x -\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x}&=\left (1-x \right )^{2} \\ \end{align*}

1.744

16935

25035

\begin{align*} t^{2}-y-t y^{\prime }&=0 \\ \end{align*}

1.744

16936

14905

\begin{align*} x^{\prime }+\left (a +\frac {1}{t}\right ) x&=b \\ x \left (1\right ) &= x_{0} \\ \end{align*}

1.745

16937

12309

\begin{align*} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x}&=0 \\ \end{align*}

1.746

16938

14201

\begin{align*} x^{\prime }&=x \left (1-\frac {x}{4}\right ) \\ \end{align*}

1.746

16939

208

\begin{align*} y^{\prime }&=\sqrt {x +y} \\ \end{align*}

1.747

16940

5138

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y&=0 \\ \end{align*}

1.747

16941

7320

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=8 x^{4} \\ \end{align*}

1.747

16942

18587

\begin{align*} y^{\prime }&=-1+{\mathrm e}^{2 x}+y \\ \end{align*}

1.747

16943

1556

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

1.748

16944

17538

\begin{align*} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y&=-\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.748

16945

19018

\begin{align*} x_{1}^{\prime }&=3 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=-\frac {x_{1}}{2}+x_{2}-3 x_{3}-\frac {5 x_{4}}{2} \\ x_{3}^{\prime }&=3 x_{2}-5 x_{3}-3 x_{4} \\ x_{4}^{\prime }&=x_{1}+3 x_{2}-3 x_{4} \\ \end{align*}

1.748

16946

20408

\begin{align*} x&=y^{\prime } y-{y^{\prime }}^{2} \\ \end{align*}

1.748

16947

76

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x^{2}} \\ \end{align*}

1.749

16948

1539

\begin{align*} y^{\prime } x +y \ln \left (x \right )&=0 \\ \end{align*}

1.750

16949

5903

\begin{align*} -y+\left (a +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

1.750

16950

9483

\begin{align*} x^{\prime }&=-2 x+y-t +3 \\ y^{\prime }&=x+4 y+t -2 \\ \end{align*}

1.750

16951

14504

\begin{align*} x^{\prime }-x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

1.750

16952

21664

\begin{align*} \cos \left (x \right ) u^{\prime \prime }+\sin \left (x \right ) u^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) u&=0 \\ u \left (\frac {\pi }{4}\right ) &= 2 \\ u^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{4}\).

1.750

16953

18250

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \\ \end{align*}

1.751

16954

18515

\begin{align*} 2 y+t y^{\prime }&=\sin \left (t \right ) \\ \end{align*}

1.751

16955

3669

\begin{align*} y^{\prime }+\frac {2 x y}{x^{2}+1}&=x y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.752

16956

4096

\begin{align*} y^{\prime }&=\frac {y-2 x}{x} \\ \end{align*}

1.752

16957

13892

\begin{align*} \left (x^{2}+a \right )^{2} y^{\prime \prime }+b \,x^{n} \left (x^{2}+a \right ) y^{\prime }-m \left (b \,x^{n +1}+\left (m -1\right ) x^{2}+a \right ) y&=0 \\ \end{align*}

1.752

16958

22368

\begin{align*} y^{\prime }&=8 y x +3 y \\ \end{align*}

1.752

16959

23977

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

1.752

16960

4106

\begin{align*} y^{\prime }-3 y&={\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \\ y \left (5\right ) &= 5 \\ \end{align*}

1.753

16961

4204

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\sin \left (2 x \right ) \\ \end{align*}

1.753

16962

4769

\begin{align*} y^{\prime } x&=x^{3}+\left (-2 x^{2}+1\right ) y \\ \end{align*}

1.753

16963

8661

\begin{align*} y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\ \end{align*}

1.753

16964

12387

\begin{align*} y^{\prime \prime } x -\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}

1.753

16965

18570

\begin{align*} 2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.753

16966

22028

\begin{align*} y+2 x y^{3}+\left (1+3 y^{2} x^{2}+x \right ) y^{\prime }&=0 \\ \end{align*}

1.753

16967

3773

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\ \end{align*}

1.754

16968

14153

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=x^{3} \\ \end{align*}

1.754

16969

9817

\begin{align*} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1&=0 \\ \end{align*}

1.755

16970

19426

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

1.755

16971

1195

\begin{align*} 2+3 x^{2}-2 y x +\left (3-x^{2}+6 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

1.756

16972

6986

\begin{align*} y^{\prime }&=x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \\ \end{align*}

1.756

16973

9779

\begin{align*} y^{\prime \prime }&=-{\mathrm e}^{-2 y} \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= 1 \\ \end{align*}

1.756

16974

12401

\begin{align*} 4 y^{\prime \prime } x +2 y^{\prime }-y&=0 \\ \end{align*}

1.756

16975

20002

\begin{align*} \left (y^{\prime } y+n x \right )^{2}&=\left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

1.756

16976

8465

\begin{align*} x^{2} y^{\prime }-y&=x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

1.757

16977

11390

\begin{align*} y^{\prime } x +y-x \sin \left (x \right )&=0 \\ \end{align*}

1.757

16978

13392

\begin{align*} y^{\prime }&=a y^{2}+2 a b \tan \left (x \right ) y+b \left (a b -1\right ) \tan \left (x \right )^{2} \\ \end{align*}

1.759

16979

14145

\begin{align*} -8 x^{3} y-\left (2 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=4 x^{3} {\mathrm e}^{-x^{2}} \\ \end{align*}

1.759

16980

14961

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\ \end{align*}

1.759

16981

15394

\begin{align*} y&=y^{\prime } x +y^{\prime } \\ \end{align*}

1.759

16982

3530

\begin{align*} x^{2} y^{\prime }-4 y x&=x^{7} \sin \left (x \right ) \\ \end{align*}

1.760

16983

4941

\begin{align*} \left (x -2\right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 y x&=0 \\ \end{align*}

1.760

16984

16037

\begin{align*} x^{\prime }&=\frac {y}{10} \\ y^{\prime }&=\frac {z}{5} \\ z^{\prime }&=\frac {2 x}{5} \\ \end{align*}

1.760

16985

5453

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\ \end{align*}

1.761

16986

15837

\begin{align*} v^{\prime }&=2 V \left (t \right )-2 v \\ \end{align*}

1.761

16987

19501

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\ \end{align*}

1.761

16988

19080

\begin{align*} y^{\prime }&=2 y x -x^{3}+x \\ \end{align*}

1.762

16989

10143

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (2\right ) &= 0 \\ \end{align*}

1.763

16990

21972

\begin{align*} y^{\prime }&=y \sin \left (x \right )+{\mathrm e}^{x} \\ \end{align*}

1.763

16991

5137

\begin{align*} x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y&=0 \\ \end{align*}

1.764

16992

15506

\begin{align*} y^{\prime }-2 y x&=0 \\ \end{align*}

1.764

16993

23931

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

1.764

16994

4342

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\ \end{align*}

1.765

16995

5217

\begin{align*} \left (1-x^{2}+y^{2}\right ) y^{\prime }&=1+x^{2}-y^{2} \\ \end{align*}

1.765

16996

8545

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.765

16997

14140

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=2 \,{\mathrm e}^{x} \\ \end{align*}

1.765

16998

5036

\begin{align*} y^{\prime } y+x \,{\mathrm e}^{x^{2}}&=0 \\ \end{align*}

1.766

16999

8677

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ \end{align*}

1.766

17000

8742

\begin{align*} 2 y^{\prime } x +y&=y^{2} \sqrt {x -y^{2} x^{2}} \\ \end{align*}

1.766