| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16601 |
\begin{align*}
y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.644 |
|
| 16602 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (9-x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.645 |
|
| 16603 |
\begin{align*}
y^{\prime \prime }+\alpha y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.645 |
|
| 16604 |
\begin{align*}
\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.647 |
|
| 16605 |
\begin{align*}
1-\left (x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| 16606 |
\begin{align*}
x^{\prime \prime }-x&=t^{2} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| 16607 |
\begin{align*}
y^{\prime }&=y x \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| 16608 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y&=\sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| 16609 |
\begin{align*}
4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.648 |
|
| 16610 |
\begin{align*}
y^{\prime } x +y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.648 |
|
| 16611 |
\begin{align*}
\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.648 |
|
| 16612 |
\begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.648 |
|
| 16613 |
\begin{align*}
y a \,x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.648 |
|
| 16614 |
\begin{align*}
y^{\prime }&=a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.648 |
|
| 16615 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.648 |
|
| 16616 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.648 |
|
| 16617 |
\begin{align*}
2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.648 |
|
| 16618 | \begin{align*}
y^{\prime }-\tan \left (x \right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.649 |
|
| 16619 |
\begin{align*}
y^{\prime }-\frac {x}{x^{2}+1}&=-\frac {x y}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.649 |
|
| 16620 |
\begin{align*}
y^{2} y^{\prime }+2 x y^{3}&=6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.650 |
|
| 16621 |
\begin{align*}
y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.650 |
|
| 16622 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (-x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.651 |
|
| 16623 |
\begin{align*}
y^{\prime } x&=x^{3}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.651 |
|
| 16624 |
\begin{align*}
5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.651 |
|
| 16625 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.652 |
|
| 16626 |
\begin{align*}
x^{2}-2 y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.652 |
|
| 16627 |
\begin{align*}
t^{2} y+y^{\prime }&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.653 |
|
| 16628 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.653 |
|
| 16629 |
\begin{align*}
x_{1}^{\prime }&=-16 x_{1}+30 x_{2}-18 x_{3} \\
x_{2}^{\prime }&=-8 x_{1}+8 x_{2}+16 x_{3} \\
x_{3}^{\prime }&=8 x_{1}-15 x_{2}+9 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| 16630 |
\begin{align*}
{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| 16631 |
\begin{align*}
x^{4}-x +y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| 16632 |
\begin{align*}
y^{\prime \prime } x +y \sin \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| 16633 |
\begin{align*}
2 x y^{\prime } y+x^{2} \left (a \,x^{3}+1\right )&=6 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.655 |
|
| 16634 |
\begin{align*}
f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.655 |
|
| 16635 |
\begin{align*}
a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.655 |
|
| 16636 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.655 |
|
| 16637 | \begin{align*}
t x^{\prime }&=-x+t^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.655 |
|
| 16638 |
\begin{align*}
10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.657 |
|
| 16639 |
\begin{align*}
y^{\prime }&=y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.657 |
|
| 16640 |
\begin{align*}
s^{2} t s^{\prime }+t^{2}+4&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.657 |
|
| 16641 |
\begin{align*}
x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.658 |
|
| 16642 |
\begin{align*}
3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.658 |
|
| 16643 |
\begin{align*}
t^{2} y^{\prime \prime }-t y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| 16644 |
\begin{align*}
1&=\left ({\mathrm e}^{y}+x \right ) y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| 16645 |
\begin{align*}
y^{\prime }+\frac {2 y}{x}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| 16646 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=x-2 y \\
z^{\prime }&=x+y-5 z \\
u^{\prime }&=5 z \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
u \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| 16647 |
\begin{align*}
\left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.659 |
|
| 16648 |
\begin{align*}
y^{\prime \prime }&=12 x \left (4-x \right ) \\
y \left (0\right ) &= 7 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.659 |
|
| 16649 |
\begin{align*}
y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
y \left (0\right ) &= -4 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| 16650 |
\begin{align*}
\left (1+y^{4}\right ) y^{\prime }&=x^{4}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| 16651 |
\begin{align*}
x&=y^{\prime \prime }+y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| 16652 |
\begin{align*}
y^{\prime \prime } {y^{\prime }}^{2}-x^{2}&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.661 |
|
| 16653 |
\begin{align*}
\left (x +1\right ) y^{\prime }+y&=\cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.662 |
|
| 16654 |
\begin{align*}
2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.662 |
|
| 16655 |
\begin{align*}
y^{\prime }&=\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.662 |
|
| 16656 | \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.663 |
|
| 16657 |
\begin{align*}
y^{\prime }&=2 t \left (1+y\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| 16658 |
\begin{align*}
y^{\prime }+4 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| 16659 |
\begin{align*}
y^{\prime }&=4+\frac {1}{\sin \left (4 x -y\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| 16660 |
\begin{align*}
y^{\prime }+6 y x&=0 \\
y \left (\pi \right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| 16661 |
\begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\
y \left (\frac {1}{4}\right ) &= 0 \\
y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| 16662 |
\begin{align*}
y^{\prime \prime } x +\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.665 |
|
| 16663 |
\begin{align*}
2 y+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.665 |
|
| 16664 |
\begin{align*}
y^{\prime }&=\frac {x +y+2}{x +1} \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.665 |
|
| 16665 |
\begin{align*}
y^{\prime }-\frac {2 x y}{x^{2}+1}&=0 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.666 |
|
| 16666 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.666 |
|
| 16667 |
\begin{align*}
y+1-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.666 |
|
| 16668 |
\begin{align*}
\frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| 16669 |
\begin{align*}
2 y-y x -3+y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| 16670 |
\begin{align*}
y^{\prime }&=\cos \left (x \right ) \sec \left (y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| 16671 |
\begin{align*}
\left (1-x^{2} y\right ) y^{\prime }+1-x y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.668 |
|
| 16672 |
\begin{align*}
y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| 16673 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.668 |
|
| 16674 |
\begin{align*}
\left (x +1\right ) y^{\prime }-y x&=x^{2}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.668 |
|
| 16675 |
\begin{align*}
\left (x^{3}+2 y\right ) y^{\prime }&=3 x \left (2-y x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.669 |
|
| 16676 | \begin{align*}
y^{\prime }-a \left (t \right ) y&=q \left (t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.669 |
|
| 16677 |
\begin{align*}
2 y^{\prime \prime }&={\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.671 |
|
| 16678 |
\begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.671 |
|
| 16679 |
\begin{align*}
x^{\prime }+5 x&=10 t +2 \\
x \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.671 |
|
| 16680 |
\begin{align*}
4 x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.671 |
|
| 16681 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\
y \left (\frac {3 \pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.671 |
|
| 16682 |
\begin{align*}
y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| 16683 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| 16684 |
\begin{align*}
2 y y^{\prime }&=y^{2}+t -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| 16685 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.673 |
|
| 16686 |
\begin{align*}
y^{\prime }&=\frac {2 y x +2 x}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.674 |
|
| 16687 |
\begin{align*}
-y+y^{\prime }&=1+3 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.674 |
|
| 16688 |
\begin{align*}
y^{\prime }+a y^{2}-b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.674 |
|
| 16689 |
\begin{align*}
{y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.674 |
|
| 16690 |
\begin{align*}
y^{\prime }&=\frac {2 x +y+1}{x +2 y-4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.675 |
|
| 16691 |
\begin{align*}
y+y^{\prime }&=\frac {1}{t^{2}+1} \\
y \left (1\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.675 |
|
| 16692 |
\begin{align*}
y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.676 |
|
| 16693 |
\begin{align*}
x^{\prime }&=3 x \left (5-x\right ) \\
x \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| 16694 |
\begin{align*}
y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.677 |
|
| 16695 |
\begin{align*}
1-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| 16696 | \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.678 |
|
| 16697 |
\begin{align*}
y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.678 |
|
| 16698 |
\begin{align*}
y^{\prime }&=-y^{2}+y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.678 |
|
| 16699 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\
y \left (1\right ) &= -2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.678 |
|
| 16700 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.678 |
|