2.3.167 Problems 16601 to 16700

Table 2.865: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16601

12293

\begin{align*} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y&=0 \\ \end{align*}

1.644

16602

2072

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (9-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.645

16603

15679

\begin{align*} y^{\prime \prime }+\alpha y&=0 \\ \end{align*}

1.645

16604

12399

\begin{align*} \left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y&=0 \\ \end{align*}

1.647

16605

16358

\begin{align*} 1-\left (x +2 y\right ) y^{\prime }&=0 \\ \end{align*}

1.647

16606

19696

\begin{align*} x^{\prime \prime }-x&=t^{2} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.647

16607

23132

\begin{align*} y^{\prime }&=y x \\ y \left (1\right ) &= 2 \\ \end{align*}

1.647

16608

24073

\begin{align*} y^{\prime \prime }-y^{\prime }-y&=\sinh \left (x \right ) \\ \end{align*}

1.647

16609

2096

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.648

16610

4283

\begin{align*} y^{\prime } x +y&=x^{2} \cos \left (x \right ) \\ \end{align*}

1.648

16611

5240

\begin{align*} \left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 y x&=0 \\ \end{align*}

1.648

16612

5671

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

1.648

16613

6202

\begin{align*} y a \,x^{3}-y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.648

16614

13289

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{k x} y^{2}+b \,{\mathrm e}^{s x} \\ \end{align*}

1.648

16615

16898

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.648

16616

20103

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

1.648

16617

23860

\begin{align*} 2 x^{3} y+\left (2 y^{2} x^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

1.648

16618

9089

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=0 \\ \end{align*}

1.649

16619

23162

\begin{align*} y^{\prime }-\frac {x}{x^{2}+1}&=-\frac {x y}{x^{2}+1} \\ \end{align*}

1.649

16620

748

\begin{align*} y^{2} y^{\prime }+2 x y^{3}&=6 x \\ \end{align*}

1.650

16621

6332

\begin{align*} y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\ \end{align*}

1.650

16622

2098

\begin{align*} x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.651

16623

4753

\begin{align*} y^{\prime } x&=x^{3}-y \\ \end{align*}

1.651

16624

23538

\begin{align*} 5 x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=\sqrt {x} \\ \end{align*}

1.651

16625

2071

\begin{align*} x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.652

16626

14521

\begin{align*} x^{2}-2 y+y^{\prime } x&=0 \\ \end{align*}

1.652

16627

2303

\begin{align*} t^{2} y+y^{\prime }&=t^{2} \\ \end{align*}

1.653

16628

10454

\begin{align*} x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.653

16629

3905

\begin{align*} x_{1}^{\prime }&=-16 x_{1}+30 x_{2}-18 x_{3} \\ x_{2}^{\prime }&=-8 x_{1}+8 x_{2}+16 x_{3} \\ x_{3}^{\prime }&=8 x_{1}-15 x_{2}+9 x_{3} \\ \end{align*}

1.654

16630

4094

\begin{align*} {\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime }&=0 \\ \end{align*}

1.654

16631

7481

\begin{align*} x^{4}-x +y-y^{\prime } x&=0 \\ \end{align*}

1.654

16632

9389

\begin{align*} y^{\prime \prime } x +y \sin \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.654

16633

5163

\begin{align*} 2 x y^{\prime } y+x^{2} \left (a \,x^{3}+1\right )&=6 y^{2} \\ \end{align*}

1.655

16634

6344

\begin{align*} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

1.655

16635

8828

\begin{align*} a y^{\prime \prime } y^{\prime \prime \prime }&=\sqrt {1+{y^{\prime \prime }}^{2}} \\ \end{align*}

1.655

16636

12444

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )}&=0 \\ \end{align*}

1.655

16637

14251

\begin{align*} t x^{\prime }&=-x+t^{2} \\ \end{align*}

1.655

16638

10424

\begin{align*} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )}&=0 \\ \end{align*}

1.657

16639

15115

\begin{align*} y^{\prime }&=y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \\ \end{align*}

1.657

16640

22514

\begin{align*} s^{2} t s^{\prime }+t^{2}+4&=0 \\ \end{align*}

1.657

16641

1228

\begin{align*} x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime }&=0 \\ \end{align*}

1.658

16642

2343

\begin{align*} 3 t^{2}+4 t y+\left (2 y+2 t^{2}\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.658

16643

2374

\begin{align*} t^{2} y^{\prime \prime }-t y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.658

16644

2965

\begin{align*} 1&=\left ({\mathrm e}^{y}+x \right ) y^{\prime } \\ \end{align*}

1.658

16645

22511

\begin{align*} y^{\prime }+\frac {2 y}{x}&=x^{2} \\ \end{align*}

1.658

16646

23629

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=x-2 y \\ z^{\prime }&=x+y-5 z \\ u^{\prime }&=5 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ u \left (0\right ) &= 0 \\ \end{align*}

1.658

16647

15376

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

1.659

16648

22308

\begin{align*} y^{\prime \prime }&=12 x \left (4-x \right ) \\ y \left (0\right ) &= 7 \\ y \left (1\right ) &= 0 \\ \end{align*}

1.659

16649

18274

\begin{align*} y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\ y \left (0\right ) &= -4 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

1.661

16650

18595

\begin{align*} \left (1+y^{4}\right ) y^{\prime }&=x^{4}+1 \\ \end{align*}

1.661

16651

19875

\begin{align*} x&=y^{\prime \prime }+y^{\prime } \\ \end{align*}

1.661

16652

23048

\begin{align*} y^{\prime \prime } {y^{\prime }}^{2}-x^{2}&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.661

16653

89

\begin{align*} \left (x +1\right ) y^{\prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

1.662

16654

12468

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.662

16655

21977

\begin{align*} y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

1.662

16656

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.663

16657

2518

\begin{align*} y^{\prime }&=2 t \left (1+y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

1.664

16658

16214

\begin{align*} y^{\prime }+4 y&=x^{2} \\ \end{align*}

1.664

16659

16300

\begin{align*} y^{\prime }&=4+\frac {1}{\sin \left (4 x -y\right )} \\ \end{align*}

1.664

16660

22070

\begin{align*} y^{\prime }+6 y x&=0 \\ y \left (\pi \right ) &= 5 \\ \end{align*}

1.664

16661

23550

\begin{align*} -3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\ y \left (\frac {1}{4}\right ) &= 0 \\ y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\ \end{align*}

1.664

16662

13763

\begin{align*} y^{\prime \prime } x +\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y&=0 \\ \end{align*}

1.665

16663

17930

\begin{align*} 2 y+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

1.665

16664

22975

\begin{align*} y^{\prime }&=\frac {x +y+2}{x +1} \\ y \left (0\right ) &= -1 \\ \end{align*}

1.665

16665

1545

\begin{align*} y^{\prime }-\frac {2 x y}{x^{2}+1}&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

1.666

16666

14711

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=4 x -6 \\ \end{align*}

1.666

16667

22042

\begin{align*} y+1-y^{\prime } x&=0 \\ \end{align*}

1.666

16668

1124

\begin{align*} \frac {y}{2}+y^{\prime }&=2 \cos \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

1.668

16669

2978

\begin{align*} 2 y-y x -3+y^{\prime } x&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

1.668

16670

4727

\begin{align*} y^{\prime }&=\cos \left (x \right ) \sec \left (y\right )^{2} \\ \end{align*}

1.668

16671

5180

\begin{align*} \left (1-x^{2} y\right ) y^{\prime }+1-x y^{2}&=0 \\ \end{align*}

1.668

16672

6388

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\ \end{align*}

1.668

16673

8146

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.668

16674

8431

\begin{align*} \left (x +1\right ) y^{\prime }-y x&=x^{2}+x \\ \end{align*}

1.668

16675

5091

\begin{align*} \left (x^{3}+2 y\right ) y^{\prime }&=3 x \left (2-y x \right ) \\ \end{align*}

1.669

16676

25431

\begin{align*} y^{\prime }-a \left (t \right ) y&=q \left (t \right ) \\ \end{align*}

1.669

16677

3272

\begin{align*} 2 y^{\prime \prime }&={\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.671

16678

12490

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.671

16679

15045

\begin{align*} x^{\prime }+5 x&=10 t +2 \\ x \left (1\right ) &= 2 \\ \end{align*}

1.671

16680

17796

\begin{align*} 4 x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.671

16681

23290

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +y&=2 \\ y \left (\frac {3 \pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {3 \pi }{4}\right ) &= 1 \\ \end{align*}

1.671

16682

16994

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

1.672

16683

19874

\begin{align*} y^{\prime \prime } x +3 y^{\prime }&=3 x \\ \end{align*}

1.672

16684

25018

\begin{align*} 2 y y^{\prime }&=y^{2}+t -1 \\ \end{align*}

1.672

16685

16921

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.673

16686

805

\begin{align*} y^{\prime }&=\frac {2 y x +2 x}{x^{2}+1} \\ \end{align*}

1.674

16687

1127

\begin{align*} -y+y^{\prime }&=1+3 \sin \left (t \right ) \\ \end{align*}

1.674

16688

11325

\begin{align*} y^{\prime }+a y^{2}-b&=0 \\ \end{align*}

1.674

16689

11808

\begin{align*} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y&=0 \\ \end{align*}

1.674

16690

1667

\begin{align*} y^{\prime }&=\frac {2 x +y+1}{x +2 y-4} \\ \end{align*}

1.675

16691

2309

\begin{align*} y+y^{\prime }&=\frac {1}{t^{2}+1} \\ y \left (1\right ) &= 2 \\ \end{align*}

1.675

16692

21562

\begin{align*} y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\ \end{align*}

1.676

16693

176

\begin{align*} x^{\prime }&=3 x \left (5-x\right ) \\ x \left (0\right ) &= 2 \\ \end{align*}

1.677

16694

1135

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \\ \end{align*}

1.677

16695

22048

\begin{align*} 1-2 x y^{\prime } y&=0 \\ \end{align*}

1.677

16696

5991

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=4 x^{3} \\ \end{align*}

1.678

16697

13293

\begin{align*} y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,{\mathrm e}^{\mu x} y+a \lambda \,{\mathrm e}^{\left (\mu -\lambda \right ) x} \\ \end{align*}

1.678

16698

14516

\begin{align*} y^{\prime }&=-y^{2}+y x +1 \\ \end{align*}

1.678

16699

14970

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.678

16700

21792

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

1.678