2.3.165 Problems 16401 to 16500

Table 2.861: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16401

1712

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

1.579

16402

4957

\begin{align*} 2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y&=0 \\ \end{align*}

1.579

16403

9083

\begin{align*} y^{\prime }&=4 y x \\ \end{align*}

1.579

16404

14266

\begin{align*} x^{\prime }+p \left (t \right ) x&=0 \\ \end{align*}

1.579

16405

15478

\begin{align*} x^{\prime \prime }+x+x^{3}&=0 \\ \end{align*}

1.579

16406

15909

\begin{align*} -2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 3 \\ \end{align*}

1.579

16407

17145

\begin{align*} y^{\prime } x +y&=x \,{\mathrm e}^{x} \\ \end{align*}

1.579

16408

19860

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\ \end{align*}

1.579

16409

67

\begin{align*} y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.580

16410

14135

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

1.580

16411

16902

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.580

16412

22444

\begin{align*} 3 x^{2}+y+3 x^{3} y+y^{\prime } x&=0 \\ \end{align*}

1.580

16413

22563

\begin{align*} i^{\prime }+3 i&=10 \sin \left (t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}

1.580

16414

19861

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\ \end{align*}

1.581

16415

2089

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.582

16416

9769

\begin{align*} 2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

1.582

16417

17639

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=8 \\ \end{align*}

1.582

16418

4968

\begin{align*} x^{3} y^{\prime }&=3-x^{2}+x^{2} y \\ \end{align*}

1.583

16419

5543

\begin{align*} y {y^{\prime }}^{2}&=a^{2} x \\ \end{align*}

1.583

16420

23194

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

1.583

16421

17520

\begin{align*} y^{\prime \prime }+9 y&=\frac {\csc \left (3 t \right )}{2} \\ y \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

1.584

16422

18619

\begin{align*} y^{\prime } x +\left (x +1\right ) y&=x \\ \end{align*}

1.584

16423

1177

\begin{align*} y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\ \end{align*}

1.585

16424

12332

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y&=0 \\ \end{align*}

1.585

16425

16757

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

1.585

16426

17468

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.585

16427

20269

\begin{align*} x \ln \left (x \right ) y^{\prime }+y&=2 \ln \left (x \right ) \\ \end{align*}

1.585

16428

3776

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\ \end{align*}

1.586

16429

13927

\begin{align*} y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\ \end{align*}

1.586

16430

16340

\begin{align*} x y^{2}-6+x^{2} y y^{\prime }&=0 \\ \end{align*}

1.586

16431

24825

\begin{align*} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

1.587

16432

4985

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=x -\left (5 x^{2}+3\right ) y \\ \end{align*}

1.588

16433

15253

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.588

16434

15947

\begin{align*} y^{\prime }&=3 y+{\mathrm e}^{7 t} \\ \end{align*}

1.588

16435

800

\begin{align*} y^{\prime }&=3 \left (y+7\right ) x^{2} \\ \end{align*}

1.589

16436

3217

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\ \end{align*}

1.589

16437

4626

\begin{align*} y^{\prime }&=1-\cot \left (x \right ) y \\ \end{align*}

1.589

16438

8251

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

1.589

16439

15958

\begin{align*} y^{\prime }+5 y&=3 \,{\mathrm e}^{-5 t} \\ y \left (0\right ) &= -2 \\ \end{align*}

1.589

16440

12938

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+y^{3} b&=0 \\ \end{align*}

1.590

16441

5839

\begin{align*} a \left (1+k \right ) x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

1.591

16442

3540

\begin{align*} y^{\prime }-\frac {y}{x}&=2 \ln \left (x \right ) x^{2} \\ \end{align*}

1.592

16443

9345

\begin{align*} y^{\prime \prime }&=-3 y \\ y \left (0\right ) &= -1 \\ \end{align*}

1.592

16444

14441

\begin{align*} 2 y x +1+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\ \end{align*}

1.592

16445

4190

\begin{align*} y^{\prime }-y&=x^{3} \\ \end{align*}

1.593

16446

4711

\begin{align*} y^{\prime }+2 y \left (1-x \sqrt {y}\right )&=0 \\ \end{align*}

1.593

16447

9660

\begin{align*} x^{\prime }&=4 x+2 y+{\mathrm e}^{t} \\ y^{\prime }&=-x+3 y-{\mathrm e}^{t} \\ \end{align*}

1.594

16448

1590

\begin{align*} y^{\prime }+\frac {\left (1+y\right ) \left (y-1\right ) \left (y-2\right )}{x +1}&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

1.595

16449

9011

\begin{align*} y^{\prime }&=y^{2} \\ y \left (x_{0} \right ) &= y_{0} \\ \end{align*}

1.595

16450

12303

\begin{align*} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y&=0 \\ \end{align*}

1.595

16451

16372

\begin{align*} 2 y+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

1.597

16452

1352

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\ \end{align*}

1.598

16453

5975

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

1.598

16454

21998

\begin{align*} \frac {1}{x}-\frac {y^{\prime }}{y}&=0 \\ \end{align*}

1.598

16455

2091

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.599

16456

4220

\begin{align*} y^{\prime }&=\frac {4 x y}{x^{2}+1} \\ \end{align*}

1.599

16457

20772

\begin{align*} y^{\prime \prime }&=\sec \left (x \right )^{2} \\ \end{align*}

1.599

16458

23757

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= 2 \\ \end{align*}

1.599

16459

24987

\begin{align*} t \left (t +1\right ) y^{\prime }&=2+y \\ \end{align*}

1.599

16460

1799

\begin{align*} y^{\prime }+y^{2}+4 y x +4 x^{2}+2&=0 \\ \end{align*}

1.601

16461

16697

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=x^{3} {\mathrm e}^{x^{2}} \\ \end{align*}

1.601

16462

18502

\begin{align*} y^{\prime }&=\frac {2 x^{2}}{2 y^{2}-6} \\ y \left (1\right ) &= 0 \\ \end{align*}

1.601

16463

20495

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

1.601

16464

20721

\begin{align*} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\ \end{align*}

1.601

16465

22978

\begin{align*} y^{\prime }-2 y x&=3 x \\ y \left (1\right ) &= 1 \\ \end{align*}

1.601

16466

684

\begin{align*} y^{\prime }&=2 x \sec \left (y\right ) \\ \end{align*}

1.602

16467

1208

\begin{align*} y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\ \end{align*}

1.602

16468

15402

\begin{align*} y^{\prime \prime }&=\frac {a}{y^{3}} \\ \end{align*}

1.602

16469

16328

\begin{align*} 2 x \left (1+y\right )-y^{\prime }&=0 \\ \end{align*}

1.602

16470

17481

\begin{align*} y^{\prime \prime }+4 y&=1 \\ \end{align*}

1.602

16471

3526

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=a x \\ y \left (0\right ) &= 2 a \\ \end{align*}

1.603

16472

4221

\begin{align*} y^{\prime }&=\frac {2 y}{x^{2}-1} \\ \end{align*}

1.603

16473

6133

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \\ \end{align*}

1.604

16474

24943

\begin{align*} y^{\prime }&=\frac {t y}{1+y} \\ \end{align*}

1.604

16475

3531

\begin{align*} y^{\prime }+2 y x&=2 x^{3} \\ \end{align*}

1.605

16476

4907

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\ \end{align*}

1.605

16477

13804

\begin{align*} x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y&=0 \\ \end{align*}

1.605

16478

15155

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y&=1 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.605

16479

1229

\begin{align*} y^{\prime }+y&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

1.606

16480

8313

\begin{align*} y^{\prime }&=\frac {x^{2}}{5}+y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

1.606

16481

9050

\begin{align*} y^{\prime } y&={\mathrm e}^{2 x} \\ \end{align*}

1.606

16482

24853

\begin{align*} {y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\ \end{align*}

1.606

16483

461

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+2 y^{\prime }+3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.607

16484

5218

\begin{align*} \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x&=0 \\ \end{align*}

1.607

16485

14152

\begin{align*} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x&=0 \\ \end{align*}

1.607

16486

19972

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

1.607

16487

2073

\begin{align*} x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (14+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.608

16488

16592

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=10 x +12 \\ y \left (1\right ) &= 6 \\ y^{\prime }\left (1\right ) &= 8 \\ \end{align*}

1.608

16489

24253

\begin{align*} 2 y&=\left (x^{2}-1\right ) \left (1-y^{\prime }\right ) \\ \end{align*}

1.608

16490

3523

\begin{align*} y^{\prime }&=\frac {x^{2} y-32}{-x^{2}+16}+32 \\ \end{align*}

1.609

16491

9336

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {2}{x} \\ \end{align*}

1.609

16492

14260

\begin{align*} y^{\prime }+a y&=\sqrt {t +1} \\ \end{align*}

1.609

16493

15241

\begin{align*} y^{\prime \prime }+4 \pi ^{2} y&=3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.609

16494

16964

\begin{align*} y^{\prime }+y x&=0 \\ \end{align*}

1.609

16495

20583

\begin{align*} x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\ \end{align*}

1.609

16496

10072

\begin{align*} y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

1.610

16497

25438

\begin{align*} y^{\prime }&=-y-\cos \left (2 t \right ) \\ \end{align*}

1.610

16498

5226

\begin{align*} \left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y&=0 \\ \end{align*}

1.611

16499

14931

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.611

16500

4194

\begin{align*} y^{\prime }+y \ln \left (x \right )&=x^{-x} \\ \end{align*}

1.612