| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 16401 |
\begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16402 |
\begin{align*}
2 x \left (1-x \right ) y^{\prime }+x +\left (1-2 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16403 |
\begin{align*}
y^{\prime }&=4 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16404 |
\begin{align*}
x^{\prime }+p \left (t \right ) x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16405 |
\begin{align*}
x^{\prime \prime }+x+x^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.579 |
|
| 16406 |
\begin{align*}
-2 y+y^{\prime }&=7 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16407 |
\begin{align*}
y^{\prime } x +y&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| 16408 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.579 |
|
| 16409 |
\begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| 16410 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.580 |
|
| 16411 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| 16412 |
\begin{align*}
3 x^{2}+y+3 x^{3} y+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| 16413 |
\begin{align*}
i^{\prime }+3 i&=10 \sin \left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.580 |
|
| 16414 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.581 |
|
| 16415 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.582 |
|
| 16416 |
\begin{align*}
2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.582 |
|
| 16417 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +4 y&=8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.582 |
|
| 16418 | \begin{align*}
x^{3} y^{\prime }&=3-x^{2}+x^{2} y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.583 |
|
| 16419 |
\begin{align*}
y {y^{\prime }}^{2}&=a^{2} x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.583 |
|
| 16420 |
\begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.583 |
|
| 16421 |
\begin{align*}
y^{\prime \prime }+9 y&=\frac {\csc \left (3 t \right )}{2} \\
y \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.584 |
|
| 16422 |
\begin{align*}
y^{\prime } x +\left (x +1\right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.584 |
|
| 16423 |
\begin{align*}
y^{\prime }&=\frac {t^{2}}{\left (t^{3}+1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| 16424 |
\begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.585 |
|
| 16425 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| 16426 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| 16427 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }+y&=2 \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| 16428 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{4} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| 16429 |
\begin{align*}
y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.586 |
|
| 16430 |
\begin{align*}
x y^{2}-6+x^{2} y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| 16431 |
\begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.587 |
|
| 16432 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime }&=x -\left (5 x^{2}+3\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.588 |
|
| 16433 |
\begin{align*}
y^{\prime \prime \prime \prime }-16 y&=32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.588 |
|
| 16434 |
\begin{align*}
y^{\prime }&=3 y+{\mathrm e}^{7 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.588 |
|
| 16435 |
\begin{align*}
y^{\prime }&=3 \left (y+7\right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.589 |
|
| 16436 |
\begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.589 |
|
| 16437 | \begin{align*}
y^{\prime }&=1-\cot \left (x \right ) y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.589 |
|
| 16438 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.589 |
|
| 16439 |
\begin{align*}
y^{\prime }+5 y&=3 \,{\mathrm e}^{-5 t} \\
y \left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.589 |
|
| 16440 |
\begin{align*}
y y^{\prime \prime }+a {y^{\prime }}^{2}+y^{3} b&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.590 |
|
| 16441 |
\begin{align*}
a \left (1+k \right ) x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.591 |
|
| 16442 |
\begin{align*}
y^{\prime }-\frac {y}{x}&=2 \ln \left (x \right ) x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.592 |
|
| 16443 |
\begin{align*}
y^{\prime \prime }&=-3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.592 |
|
| 16444 |
\begin{align*}
2 y x +1+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.592 |
|
| 16445 |
\begin{align*}
y^{\prime }-y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.593 |
|
| 16446 |
\begin{align*}
y^{\prime }+2 y \left (1-x \sqrt {y}\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.593 |
|
| 16447 |
\begin{align*}
x^{\prime }&=4 x+2 y+{\mathrm e}^{t} \\
y^{\prime }&=-x+3 y-{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.594 |
|
| 16448 |
\begin{align*}
y^{\prime }+\frac {\left (1+y\right ) \left (y-1\right ) \left (y-2\right )}{x +1}&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.595 |
|
| 16449 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.595 |
|
| 16450 |
\begin{align*}
y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.595 |
|
| 16451 |
\begin{align*}
2 y+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.597 |
|
| 16452 |
\begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| 16453 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| 16454 |
\begin{align*}
\frac {1}{x}-\frac {y^{\prime }}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| 16455 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 16456 |
\begin{align*}
y^{\prime }&=\frac {4 x y}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 16457 | \begin{align*}
y^{\prime \prime }&=\sec \left (x \right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.599 |
|
| 16458 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= 2 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.599 |
|
| 16459 |
\begin{align*}
t \left (t +1\right ) y^{\prime }&=2+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| 16460 |
\begin{align*}
y^{\prime }+y^{2}+4 y x +4 x^{2}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| 16461 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=x^{3} {\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.601 |
|
| 16462 |
\begin{align*}
y^{\prime }&=\frac {2 x^{2}}{2 y^{2}-6} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| 16463 |
\begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| 16464 |
\begin{align*}
a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.601 |
|
| 16465 |
\begin{align*}
y^{\prime }-2 y x&=3 x \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| 16466 |
\begin{align*}
y^{\prime }&=2 x \sec \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 16467 |
\begin{align*}
y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 16468 |
\begin{align*}
y^{\prime \prime }&=\frac {a}{y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 16469 |
\begin{align*}
2 x \left (1+y\right )-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 16470 |
\begin{align*}
y^{\prime \prime }+4 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| 16471 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+y x&=a x \\
y \left (0\right ) &= 2 a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.603 |
|
| 16472 |
\begin{align*}
y^{\prime }&=\frac {2 y}{x^{2}-1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.603 |
|
| 16473 |
\begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 16474 |
\begin{align*}
y^{\prime }&=\frac {t y}{1+y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.604 |
|
| 16475 |
\begin{align*}
y^{\prime }+2 y x&=2 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.605 |
|
| 16476 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.605 |
|
| 16477 | \begin{align*}
x^{2} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a b \,x^{n}+a c \,x^{n -1}+b^{2} x^{2}+2 b x c +c^{2}-c \right ) y&=0 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 1.605 |
|
| 16478 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }+y^{\prime } x +7 y&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.605 |
|
| 16479 |
\begin{align*}
y^{\prime }+y&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.606 |
|
| 16480 |
\begin{align*}
y^{\prime }&=\frac {x^{2}}{5}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.606 |
|
| 16481 |
\begin{align*}
y^{\prime } y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.606 |
|
| 16482 |
\begin{align*}
{y^{\prime }}^{4}+y^{\prime } x -3 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
1.606 |
|
| 16483 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+2 y^{\prime }+3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| 16484 |
\begin{align*}
\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| 16485 |
\begin{align*}
\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| 16486 |
\begin{align*}
\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.607 |
|
| 16487 |
\begin{align*}
x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (14+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.608 |
|
| 16488 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=10 x +12 \\
y \left (1\right ) &= 6 \\
y^{\prime }\left (1\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.608 |
|
| 16489 |
\begin{align*}
2 y&=\left (x^{2}-1\right ) \left (1-y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.608 |
|
| 16490 |
\begin{align*}
y^{\prime }&=\frac {x^{2} y-32}{-x^{2}+16}+32 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.609 |
|
| 16491 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {2}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 16492 |
\begin{align*}
y^{\prime }+a y&=\sqrt {t +1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 16493 |
\begin{align*}
y^{\prime \prime }+4 \pi ^{2} y&=3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 16494 |
\begin{align*}
y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| 16495 |
\begin{align*}
x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.609 |
|
| 16496 |
\begin{align*}
y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.610 |
|
| 16497 | \begin{align*}
y^{\prime }&=-y-\cos \left (2 t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.610 |
|
| 16498 |
\begin{align*}
\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.611 |
|
| 16499 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| 16500 |
\begin{align*}
y^{\prime }+y \ln \left (x \right )&=x^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.612 |
|