2.3.156 Problems 15501 to 15600

Table 2.843: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15501

4653

\begin{align*} y^{\prime }+f \left (x \right )^{2}&=f^{\prime }\left (x \right )+y^{2} \\ \end{align*}

1.316

15502

5431

\begin{align*} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\ \end{align*}

1.316

15503

23466

\begin{align*} 3 x^{2} y^{\prime \prime }-2 y^{\prime } x -8 y&=3 x +5 \\ \end{align*}

1.316

15504

25302

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\left \{\begin {array}{cc} 0 & 0\le t <1 \\ 6 & 1\le t <3 \\ 0 & 3\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.316

15505

8229

\begin{align*} \left (y^{3}+1\right ) y^{\prime }&=x^{2} \\ \end{align*}

1.317

15506

12953

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2}&=0 \\ \end{align*}

1.317

15507

21979

\begin{align*} y^{\prime }&=\frac {y+x^{2}}{x^{3}} \\ \end{align*}

1.317

15508

22208

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.318

15509

6535

\begin{align*} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.319

15510

9189

\begin{align*} y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

1.319

15511

17103

\begin{align*} y^{\prime }&=y^{3}+y \\ \end{align*}

1.319

15512

8448

\begin{align*} L i^{\prime }+R i&=E \\ i \left (0\right ) &= i_{0} \\ \end{align*}

1.320

15513

9628

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=\operatorname {Heaviside}\left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

1.320

15514

18048

\begin{align*} y^{\prime }&=\frac {1}{2 x -y^{2}} \\ \end{align*}

1.320

15515

19757

\begin{align*} y^{\prime \prime }+3 y&=\sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \\ \end{align*}

1.320

15516

24973

\begin{align*} y^{\prime }&=\frac {y x +2 y}{x} \\ y \left (1\right ) &= {\mathrm e} \\ \end{align*}

1.320

15517

25626

\begin{align*} \frac {c y^{\prime \prime }}{\omega ^{2}}+c y&=\cos \left (\omega t \right ) \\ \end{align*}

1.320

15518

8041

\begin{align*} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )&=x \\ \end{align*}

1.321

15519

1838

\begin{align*} \left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.322

15520

15538

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

1.322

15521

16599

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x \\ \end{align*}

1.322

15522

18306

\begin{align*} \left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y&=6 \ln \left (x +1\right ) \\ \end{align*}

1.323

15523

22014

\begin{align*} y^{\prime }&=\frac {x +2 y}{x} \\ \end{align*}

1.323

15524

17139

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\ \end{align*}

1.325

15525

20373

\begin{align*} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y&=\sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \\ \end{align*}

1.325

15526

16306

\begin{align*} y^{\prime }&=2 \sqrt {2 x +y-3} \\ \end{align*}

1.326

15527

17780

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y&=0 \\ \end{align*}

1.326

15528

18303

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y&=x^{2}-2 x +2 \\ \end{align*}

1.326

15529

18449

\begin{align*} x^{\prime }&=2 x+y-2 z+2-t \\ y^{\prime }&=1-x \\ z^{\prime }&=x+y-z+1-t \\ \end{align*}

1.326

15530

22968

\begin{align*} \frac {y}{x}+\ln \left (x \right ) y^{\prime }&=2 \\ \end{align*}

1.326

15531

1120

\begin{align*} -2 y+3 y^{\prime }&={\mathrm e}^{-\frac {\pi t}{2}} \\ y \left (0\right ) &= a \\ \end{align*}

1.327

15532

4908

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=2 x \left (x -y\right ) \\ \end{align*}

1.327

15533

18845

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\ \end{align*}

1.327

15534

4903

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }-x^{2}+y x&=0 \\ \end{align*}

1.328

15535

5372

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )&=0 \\ \end{align*}

1.328

15536

17613

\begin{align*} 5 y-8 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.328

15537

3780

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= \sqrt {2} \\ y^{\prime }\left (1\right ) &= 3 \sqrt {2} \\ \end{align*}

1.329

15538

4904

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+x^{2}+y x&=0 \\ \end{align*}

1.329

15539

5660

\begin{align*} y^{2} {y^{\prime }}^{3}-y^{\prime } x +y&=0 \\ \end{align*}

1.329

15540

15281

\begin{align*} x^{\prime }&=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }&=-10 x+9 y+37 \\ \end{align*}

1.329

15541

16260

\begin{align*} y^{\prime }&=1+y x +3 y \\ \end{align*}

1.329

15542

17163

\begin{align*} -y+y^{\prime }&=4 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 4 \\ \end{align*}

1.329

15543

25432

\begin{align*} y^{\prime }-a \left (t \right ) y&=q \\ \end{align*}

1.329

15544

14389

\begin{align*} x^{\prime }&=3 y-3 x \\ y^{\prime }&=x+2 y-1 \\ \end{align*}

1.331

15545

20664

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

1.331

15546

21940

\begin{align*} y^{\prime }-3 z&=5 \\ y-z^{\prime }-x&=3-2 t \\ z+x^{\prime }&=-1 \\ \end{align*}

1.331

15547

25459

\begin{align*} y^{\prime }&=y-{\mathrm e}^{2 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.331

15548

2530

\begin{align*} y^{\prime }&=\left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.332

15549

12434

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

1.332

15550

17655

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}

1.332

15551

23576

\begin{align*} x^{\prime }&=3 x-2 y+2 t^{2} \\ y^{\prime }&=5 x+y-1 \\ \end{align*}

1.332

15552

25799

\begin{align*} y^{\prime }&=x +y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.332

15553

6007

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=\ln \left (x \right ) x^{2} \\ \end{align*}

1.333

15554

15835

\begin{align*} v^{\prime }&=-\frac {v}{R C} \\ \end{align*}

1.333

15555

661

\begin{align*} y^{\prime }&=-y-\sin \left (x \right ) \\ \end{align*}

1.334

15556

12296

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\ \end{align*}

1.334

15557

12961

\begin{align*} 2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+y^{2} \left (1+a y^{3}\right )&=0 \\ \end{align*}

1.334

15558

16469

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

1.334

15559

24940

\begin{align*} y^{\prime }&=-t y \\ \end{align*}

1.334

15560

4767

\begin{align*} y^{\prime } x +x +\left (a x +2\right ) y&=0 \\ \end{align*}

1.335

15561

8837

\begin{align*} -y+y^{\prime } x&=y^{2}+x^{2} \\ \end{align*}

1.335

15562

18249

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}

1.335

15563

1109

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

1.336

15564

1521

\begin{align*} y^{\prime }+2 y x&=x \\ \end{align*}

1.336

15565

5296

\begin{align*} 2 y^{3} y^{\prime }&=x^{3}-x y^{2} \\ \end{align*}

1.336

15566

13849

\begin{align*} x^{3} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x -\left (a \,x^{n}-a b \,x^{n -1}+b \right ) y&=0 \\ \end{align*}

1.336

15567

15519

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (2\right ) &= 4 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.336

15568

16101

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.336

15569

16574

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

1.336

15570

17185

\begin{align*} y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

1.336

15571

3596

\begin{align*} y-\left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

1.337

15572

12300

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y&=0 \\ \end{align*}

1.337

15573

24098

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.337

15574

3440

\begin{align*} y^{\prime }&=2 y+{\mathrm e}^{2 t} \\ \end{align*}

1.339

15575

4345

\begin{align*} x^{2}+y+y^{2}-y^{\prime } x&=0 \\ \end{align*}

1.339

15576

5487

\begin{align*} 4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\ \end{align*}

1.339

15577

7116

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=x^{3} \\ \end{align*}

1.339

15578

8774

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4}&=-\frac {x^{2}}{2}+\frac {1}{2} \\ \end{align*}

1.339

15579

12388

\begin{align*} y^{\prime \prime } x -\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y&=0 \\ \end{align*}

1.339

15580

12838

\begin{align*} y^{\prime \prime }-6 y^{2}+4 y&=0 \\ \end{align*}

1.339

15581

20092

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=2 \ln \left (x \right ) \\ \end{align*}

1.339

15582

20500

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=x^{m} \\ \end{align*}

1.339

15583

25739

\begin{align*} y^{\prime \prime }+9 y&=18 \\ \end{align*}

1.339

15584

6158

\begin{align*} -\left (\left (2 n +1\right )^{2}-4 x^{2}\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.340

15585

20802

\begin{align*} y^{\prime \prime }+a^{2} y&=\sec \left (a x \right ) \\ \end{align*}

1.340

15586

2320

\begin{align*} y^{\prime }&={\mathrm e}^{3+t +y} \\ \end{align*}

1.342

15587

4897

\begin{align*} \left (x^{2}+1\right ) y^{\prime }-a +y x&=0 \\ \end{align*}

1.342

15588

13953

\begin{align*} y^{\prime \prime }+\left (2 a \,{\mathrm e}^{\lambda x}+b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y&=0 \\ \end{align*}

1.342

15589

14824

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=\left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.342

15590

21605

\begin{align*} x^{2} \cos \left (x \right ) y^{\prime \prime }+\left (x \sin \left (x \right )-2 \cos \left (x \right )\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

1.342

15591

21995

\begin{align*} {\mathrm e}^{x}-y^{\prime } y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

1.342

15592

259

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

1.343

15593

2745

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{3} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ x_{3}^{\prime }&=-2 x_{1}-x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= -1 \\ x_{3} \left (0\right ) &= -2 \\ \end{align*}

1.343

15594

9417

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\ \end{align*}
Series expansion around \(x=1\).

1.343

15595

20771

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

1.343

15596

4075

\begin{align*} y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.344

15597

12464

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (3 x +2\right ) y&=0 \\ \end{align*}

1.344

15598

18087

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

1.344

15599

20099

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\ \end{align*}

1.344

15600

22608

\begin{align*} y^{\prime }&=\frac {y}{x} \\ \end{align*}

1.344