| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15301 |
\begin{align*}
t y^{\prime \prime }+t y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
1.259 |
|
| 15302 |
\begin{align*}
x^{2} y^{\prime }&=a +b x y+c \,x^{4} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.259 |
|
| 15303 |
\begin{align*}
x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.259 |
|
| 15304 |
\begin{align*}
2 y+y^{\prime }&=3 x -6 \\
y \left (x_{0} \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.259 |
|
| 15305 |
\begin{align*}
t^{2} y+y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| 15306 |
\begin{align*}
y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| 15307 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| 15308 |
\begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| 15309 |
\begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.260 |
|
| 15310 |
\begin{align*}
f \left (x \right )^{2} y^{\prime \prime }&=3 f \left (x \right )^{3}-a f \left (x \right )^{5}-f \left (x \right )^{2} y+3 f \left (x \right ) f^{\prime }\left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.261 |
|
| 15311 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| 15312 |
\begin{align*}
y^{\prime }&=x +y \\
y \left (-2\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| 15313 |
\begin{align*}
t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.262 |
|
| 15314 |
\begin{align*}
y^{\prime }+y x&=\frac {1}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.262 |
|
| 15315 |
\begin{align*}
\left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| 15316 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| 15317 |
\begin{align*}
y^{\prime \prime }&=y^{\prime } \left (y^{\prime }-2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| 15318 | \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.263 |
|
| 15319 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 12 \\
y^{\prime }\left (0\right ) &= 7 \\
y^{\prime \prime }\left (0\right ) &= 2 \\
y^{\prime \prime \prime }\left (0\right ) &= -9 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| 15320 |
\begin{align*}
y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| 15321 |
\begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.264 |
|
| 15322 |
\begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.265 |
|
| 15323 |
\begin{align*}
t +x+3+x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.266 |
|
| 15324 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.266 |
|
| 15325 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{2+x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.266 |
|
| 15326 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\omega x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| 15327 |
\begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| 15328 |
\begin{align*}
y^{\prime }+\frac {x y}{x^{2}+1}&=\frac {1}{x \left (x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| 15329 |
\begin{align*}
4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.267 |
|
| 15330 |
\begin{align*}
y^{\prime }&=\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.268 |
|
| 15331 |
\begin{align*}
y^{2} \left (y-y^{\prime } x \right )&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.268 |
|
| 15332 |
\begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.268 |
|
| 15333 |
\begin{align*}
x^{2} y^{\prime }+2 y x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.269 |
|
| 15334 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y&=0 \\
y \left (1\right ) &= 9 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.269 |
|
| 15335 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+{\mathrm e}^{c t} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-2 x_{3} \\
x_{3}^{\prime }&=3 x_{1}+2 x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| 15336 |
\begin{align*}
x -y+\left (y-x +1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| 15337 | \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.270 |
|
| 15338 |
\begin{align*}
x^{\prime \prime }+x&=2 \tan \left (t \right ) \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| 15339 |
\begin{align*}
x^{\prime }-2 x+y^{\prime }-2 y&=1 \\
y^{\prime }+z^{\prime }+z&=2 \\
3 x+z^{\prime }+z&=3 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
z \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| 15340 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.271 |
|
| 15341 |
\begin{align*}
z^{\prime }+y+3 z&={\mathrm e}^{x} \\
y^{\prime }+3 y+4 z&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| 15342 |
\begin{align*}
y^{\prime \prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| 15343 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=1+\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| 15344 |
\begin{align*}
y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15345 |
\begin{align*}
y^{\prime \prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15346 |
\begin{align*}
y^{\prime }&=t -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15347 |
\begin{align*}
-\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.273 |
|
| 15348 |
\begin{align*}
y^{\prime }&=2 y \left (1-y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15349 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15350 |
\begin{align*}
y^{\prime }&=x +y \\
y \left (1\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| 15351 |
\begin{align*}
y^{\prime }&=-y-\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.274 |
|
| 15352 |
\begin{align*}
4 y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.274 |
|
| 15353 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }&=2 \cos \left (4 x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.274 |
|
| 15354 |
\begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.274 |
|
| 15355 |
\begin{align*}
x^{\prime }&=x-y \\
y^{\prime }&=3 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.274 |
|
| 15356 | \begin{align*}
\left (-a +1\right )^{2} y+a \,x^{2 a -1} y^{\prime }+x^{2 a} y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.275 |
|
| 15357 |
\begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.275 |
|
| 15358 |
\begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.275 |
|
| 15359 |
\begin{align*}
y^{\prime \prime } x +a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.276 |
|
| 15360 |
\begin{align*}
y^{\prime }&=\left (x +y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.276 |
|
| 15361 |
\begin{align*}
y^{\prime }-2 t y&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.277 |
|
| 15362 |
\begin{align*}
y^{\prime }+y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.277 |
|
| 15363 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.277 |
|
| 15364 |
\begin{align*}
y^{\prime \prime }&=-\frac {a y}{\sin \left (x \right )^{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.277 |
|
| 15365 |
\begin{align*}
y^{\prime \prime }-4 y&=12 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| 15366 |
\begin{align*}
y^{\prime }&=\frac {y^{2}+\tan \left (x \right ) y+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.279 |
|
| 15367 |
\begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| 15368 |
\begin{align*}
y^{\prime \prime }+6 a^{10} y^{11}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.279 |
|
| 15369 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t^{3}+1-4 t \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| 15370 |
\begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| 15371 |
\begin{align*}
2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.279 |
|
| 15372 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| 15373 |
\begin{align*}
y^{\prime }-2 t y&=1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.280 |
|
| 15374 |
\begin{align*}
x^{2} y^{\prime \prime }+a y^{\prime }-y x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.280 |
|
| 15375 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (-b +x \right )+\left (1-\alpha -\beta \right ) \left (-b +x \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (-b +x \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (-b +x \right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.280 |
|
| 15376 | \begin{align*}
3 y^{\prime }&=-2+\sqrt {2 x +3 y+4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.280 |
|
| 15377 |
\begin{align*}
y^{\prime }-a^{n} f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-g^{\prime }\left (x \right ) f \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.281 |
|
| 15378 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }&=4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.281 |
|
| 15379 |
\begin{align*}
y-\left (x -2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.282 |
|
| 15380 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.282 |
|
| 15381 |
\begin{align*}
y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.282 |
|
| 15382 |
\begin{align*}
\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.282 |
|
| 15383 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| 15384 |
\begin{align*}
-2 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| 15385 |
\begin{align*}
y^{\prime \prime }&=A y^{{2}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| 15386 |
\begin{align*}
y^{\prime \prime } x -\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.283 |
|
| 15387 |
\begin{align*}
x^{n} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{n}+b \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.283 |
|
| 15388 |
\begin{align*}
y^{\prime }+2 y x&=y^{2}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| 15389 |
\begin{align*}
x^{2} y^{\prime }+y-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.284 |
|
| 15390 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{{1}/{4}} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.284 |
|
| 15391 |
\begin{align*}
2 y y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.285 |
|
| 15392 |
\begin{align*}
y^{\prime }&=\left (x -y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.286 |
|
| 15393 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.286 |
|
| 15394 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.286 |
|
| 15395 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=10 x^{2} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| 15396 | \begin{align*}
y^{\prime \prime }-16 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.287 |
|
| 15397 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| 15398 |
\begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| 15399 |
\begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.288 |
|
| 15400 |
\begin{align*}
\left (2+3 x -y x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.289 |
|