| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 14401 |
\begin{align*}
2 x^{\prime }+3 x-y&={\mathrm e}^{t} \\
5 x-3 y^{\prime }&=y+2 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.028 |
|
| 14402 |
\begin{align*}
x^{2} \left (2 x +1\right ) y^{\prime \prime }+2 x \left (1+6 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.028 |
|
| 14403 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.028 |
|
| 14404 |
\begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.029 |
|
| 14405 |
\begin{align*}
{y^{\prime }}^{2}&=a^{2}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.029 |
|
| 14406 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.029 |
|
| 14407 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.029 |
|
| 14408 |
\begin{align*}
-2 y+y^{\prime }&=3 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14409 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14410 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14411 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14412 |
\begin{align*}
x&={y^{\prime }}^{3}-y^{\prime }+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14413 |
\begin{align*}
y^{\prime \prime }&=\frac {1}{2 y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14414 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14415 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| 14416 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+\left (y^{3} a \,x^{2}+b \right ) y^{\prime }+a b y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.031 |
|
| 14417 |
\begin{align*}
y^{\prime \prime }&=\frac {a}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.031 |
|
| 14418 | \begin{align*}
y^{\prime \prime }+w^{2} y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.032 |
|
| 14419 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}+{\mathrm e}^{2 t} \\
x_{2}^{\prime }&=-2 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| 14420 |
\begin{align*}
\left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
1.032 |
|
| 14421 |
\begin{align*}
y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.032 |
|
| 14422 |
\begin{align*}
4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| 14423 |
\begin{align*}
y^{\prime }&=a +b x +c y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14424 |
\begin{align*}
-a^{2} y+y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14425 |
\begin{align*}
y^{\prime }-y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14426 |
\begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14427 |
\begin{align*}
y^{\prime }+y&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14428 |
\begin{align*}
4 a y^{\prime \prime }+b y^{\prime }+\frac {c y}{4}&=f \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| 14429 |
\begin{align*}
\left (1+z^{\prime }\right ) {\mathrm e}^{-z}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.034 |
|
| 14430 |
\begin{align*}
2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (4 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.034 |
|
| 14431 |
\begin{align*}
y^{\prime }&=\frac {y-x +1}{3-x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.034 |
|
| 14432 |
\begin{align*}
2 y^{\prime \prime } x +\left (2 x +1\right ) y^{\prime }-3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.035 |
|
| 14433 |
\begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.035 |
|
| 14434 |
\begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14435 |
\begin{align*}
\left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14436 |
\begin{align*}
y^{\prime }&=y \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14437 | \begin{align*}
2 x y^{\prime \prime } y^{\prime \prime \prime }&=-a^{2}+{y^{\prime \prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 1.036 |
|
| 14438 |
\begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14439 |
\begin{align*}
y^{\prime \prime \prime }+9 y^{\prime }&=\sec \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14440 |
\begin{align*}
{\mathrm e}^{x} \sec \left (y\right )+\left ({\mathrm e}^{x}+1\right ) \sec \left (y\right ) \tan \left (y\right ) y^{\prime }&=0 \\
y \left (3\right ) &= \frac {\pi }{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.036 |
|
| 14441 |
\begin{align*}
{y^{\prime }}^{3}+y {y^{\prime }}^{2}-x^{2} y^{\prime }-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14442 |
\begin{align*}
y^{\prime }&=\sqrt {y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| 14443 |
\begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y&=0 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
1.037 |
|
| 14444 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=2 \left (-1+t \right ) {\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.038 |
|
| 14445 |
\begin{align*}
L y^{\prime }+R y&=E \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.038 |
|
| 14446 |
\begin{align*}
r^{\prime }&={\mathrm e}^{t}-3 r \\
r \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.038 |
|
| 14447 |
\begin{align*}
y^{\prime } x +\left (2 x -3\right ) y&=4 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| 14448 |
\begin{align*}
y^{\prime \prime }&=1+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| 14449 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (6 x^{2}-3 x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| 14450 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| 14451 |
\begin{align*}
x^{\prime }&=3 x-2 y+2 t^{2} \\
y^{\prime }&=5 x+y-1 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= {\frac {534}{2197}} \\
y \left (0\right ) &= {\frac {567}{2197}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| 14452 |
\begin{align*}
y^{\prime } x&=y x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| 14453 |
\begin{align*}
4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.040 |
|
| 14454 |
\begin{align*}
y^{\prime }&=\frac {1}{y-2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| 14455 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| 14456 | \begin{align*}
y_{1}^{\prime }&=3 y_{1}+2 y_{2} \\
y_{2}^{\prime }&=3 y_{2}-2 y_{1} \\
y_{3}^{\prime }&=y_{3} \\
y_{4}^{\prime }&=2 y_{4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.041 |
|
| 14457 |
\begin{align*}
x^{\prime }&=2 x+y+3 \,{\mathrm e}^{2 t} \\
y^{\prime }&=-4 x+2 y+{\mathrm e}^{2 t} t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.041 |
|
| 14458 |
\begin{align*}
y^{\prime } x&=y^{2} x^{2}-y+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.041 |
|
| 14459 |
\begin{align*}
\left (-1+t \right ) y^{\prime \prime }-t y^{\prime }+y&=2 t \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.041 |
|
| 14460 |
\begin{align*}
y^{\prime }&=y \left (1-y^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.042 |
|
| 14461 |
\begin{align*}
\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.042 |
|
| 14462 |
\begin{align*}
y^{\prime \prime }-4 y&=\operatorname {Heaviside}\left (-1+t \right )-\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| 14463 |
\begin{align*}
y^{\prime }&=y^{2}-3 y+2 \\
y \left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.043 |
|
| 14464 |
\begin{align*}
y^{\prime }-\frac {1}{\sqrt {\operatorname {a4} \,x^{4}+\operatorname {a3} \,x^{3}+\operatorname {a2} \,x^{2}+\operatorname {a1} x +\operatorname {a0}}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| 14465 |
\begin{align*}
y^{\prime \prime \prime }&=\sqrt {1-{y^{\prime \prime }}^{2}} \\
\end{align*} |
✓ |
✗ |
✓ |
✓ |
1.043 |
|
| 14466 |
\begin{align*}
4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| 14467 |
\begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| 14468 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
1.044 |
|
| 14469 |
\begin{align*}
y^{\prime }&=3 y+{\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| 14470 |
\begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| 14471 |
\begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| 14472 |
\begin{align*}
v^{\prime \prime }+\frac {2 v^{\prime }}{r}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| 14473 |
\begin{align*}
x^{\prime }&=\left (a -2\right ) x+y \\
y^{\prime }&=-x+\left (a -2\right ) y \\
z^{\prime }&=-a z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| 14474 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -y&=1 \\
\end{align*} |
✓ |
✓ |
✗ |
✓ |
1.045 |
|
| 14475 | \begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=f \left (t \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.045 |
|
| 14476 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14477 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14478 |
\begin{align*}
y^{\prime }&=\sqrt {y^{2}+x^{2}} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
1.046 |
|
| 14479 |
\begin{align*}
y^{\prime }-2 y&=2 \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14480 |
\begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14481 |
\begin{align*}
x^{\prime \prime }+4 x&=\delta \left (t -2\right )-\delta \left (t -5\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14482 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}}&=0 \\
\end{align*} Series expansion around \(x=4\). |
✓ |
✓ |
✓ |
✗ |
1.046 |
|
| 14483 |
\begin{align*}
y^{\prime }&=y x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14484 |
\begin{align*}
y^{\prime }+y x&=3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| 14485 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\
x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| 14486 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| 14487 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.047 |
|
| 14488 |
\begin{align*}
x^{\prime }&=2 x+y+2 z \\
y^{\prime }&=3 x+6 z \\
z^{\prime }&=-4 x-3 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| 14489 |
\begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| 14490 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (-p^{2}+x^{2}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
1.047 |
|
| 14491 |
\begin{align*}
\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.048 |
|
| 14492 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\pi \right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.048 |
|
| 14493 |
\begin{align*}
z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.048 |
|
| 14494 |
\begin{align*}
y^{\prime }&=y \ln \left (y+2\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.048 |
|
| 14495 | \begin{align*}
y^{\prime \prime }+9 y&=9 \sec \left (3 t \right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 1.049 |
|
| 14496 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y&={\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| 14497 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
1.049 |
|
| 14498 |
\begin{align*}
y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| 14499 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| 14500 |
\begin{align*}
y^{\prime }&=4 x -2 y \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
1.049 |
|