| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
1+x y \left (x y^{2}+1\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✗ |
✗ |
9.896 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+y x&=x \left (-x^{2}+1\right ) \sqrt {y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
0.606 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime }-1-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.499 |
|
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
57.204 |
|
| \begin{align*}
2 x +y-\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.042 |
|
| \begin{align*}
x \ln \left (x \right ) y^{\prime }+y-x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.914 |
|
| \begin{align*}
x -2 y+1+\left (y-2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.470 |
|
| \begin{align*}
2 y x -2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.612 |
|
| \begin{align*}
2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.859 |
|
| \begin{align*}
6+2 y&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.603 |
|
| \begin{align*}
x -3 y&=\left (3 y-x +2\right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.480 |
|
| \begin{align*}
y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
37.635 |
|
| \begin{align*}
x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.148 |
|
| \begin{align*}
y-y^{\prime } x&=2 y^{\prime }+2 y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.411 |
|
| \begin{align*}
\tan \left (y\right )&=\left (3 x +4\right ) y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.720 |
|
| \begin{align*}
y^{\prime }+y \ln \left (y\right ) \tan \left (x \right )&=2 y \\
\end{align*} | [[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] | ✓ | ✓ | ✓ | ✓ | 3.852 |
|
| \begin{align*}
2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.316 |
|
| \begin{align*}
y+\left (3 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
22.938 |
|
| \begin{align*}
r^{\prime }&=r \cot \left (\theta \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.233 |
|
| \begin{align*}
\left (3 x +4 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.945 |
|
| \begin{align*}
2 x^{3}-y^{3}-3 x +3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.294 |
|
| \begin{align*}
y^{\prime } x -y-\sqrt {y^{2}+x^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.560 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \cos \left (x \right )^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.024 |
|
| \begin{align*}
x +y+\left (2 x +3 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
24.173 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.621 |
|
| \begin{align*}
y^{\prime }+x +\cot \left (x \right ) y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| \begin{align*}
3 x -6&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.506 |
|
| \begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
2.608 |
|
| \begin{align*}
2 y^{\prime } x -y+\frac {x^{2}}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.190 |
|
| \begin{align*}
y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.810 |
|
| \begin{align*}
y \sqrt {y^{2}+x^{2}}+y x&=x^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
22.657 |
|
| \begin{align*}
3 \,{\mathrm e}^{x} \tan \left (y\right )&=\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.680 |
|
| \begin{align*}
\sec \left (y\right )^{2} y^{\prime }&=\tan \left (y\right )+2 x \,{\mathrm e}^{x} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✓ |
✗ |
✓ |
✗ |
2.348 |
|
| \begin{align*}
2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 y x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [_exact] | ✓ | ✓ | ✓ | ✗ | 18.197 |
|
| \begin{align*}
y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.580 |
|
| \begin{align*}
y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
9.382 |
|
| \begin{align*}
x +\left (2 x +3 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.329 |
|
| \begin{align*}
y^{\prime } x -5 y-x \sqrt {y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.300 |
|
| \begin{align*}
x \sqrt {1-y}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.411 |
|
| \begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.113 |
|
| \begin{align*}
x \,{\mathrm e}^{-y^{2}}+y^{\prime } y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.726 |
|
| \begin{align*}
\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
6.751 |
|
| \begin{align*}
y^{\prime } x -2 y-2 y^{3} x^{4}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.078 |
|
| \begin{align*}
\left (-2 x^{2}-3 y x \right ) y^{\prime }+y^{2}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.314 |
|
| \begin{align*}
y^{\prime } x&=x^{4}+4 y \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.437 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{6} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.764 |
|
| \begin{align*}
x^{\prime }&=x+x^{2} {\mathrm e}^{\theta } \\
x \left (0\right ) &= 2 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.190 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.489 |
|
| \begin{align*}
3 y x +\left (3 x^{2}+y^{2}\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.392 |
|
| \begin{align*}
2 y+y^{\prime }&=3 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.772 |
|
| \begin{align*}
4 x y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.567 |
|
| \begin{align*}
x -2 y+3&=\left (x -2 y+1\right ) y^{\prime } \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.493 |
|
| \begin{align*}
y^{2}+\left (x^{3}-2 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✗ |
✗ |
12.815 |
|
| \begin{align*}
2 y x -2 y+1+x \left (x -1\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.960 |
|
| \begin{align*}
y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✗ |
24.710 |
|
| \begin{align*}
2 \left (x^{2}+1\right ) y^{\prime }&=\left (2 y^{2}-1\right ) x y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.313 |
|
| \begin{align*}
y^{\prime }-y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.068 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime }+8 y&=0 \\
\end{align*} | [[_high_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.072 |
|
| \begin{align*}
y^{\prime \prime \prime }-7 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }-17 y^{\prime }+60 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.069 |
|
| \begin{align*}
y^{\prime \prime \prime }-9 y^{\prime \prime }+23 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.067 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.077 |
|
| \begin{align*}
2 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-20 y^{\prime \prime }+27 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.079 |
|
| \begin{align*}
12 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.079 |
|
| \begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.056 |
|
| \begin{align*}
4 y^{\prime \prime \prime }+2 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.072 |
|
| \begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-7 y^{\prime \prime }-8 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.078 |
|
| \begin{align*}
y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.078 |
|
| \begin{align*}
y^{\left (5\right )}+y^{\prime \prime \prime \prime }-13 y^{\prime \prime \prime }-13 y^{\prime \prime }+36 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.086 |
|
| \begin{align*}
y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-15 y^{\prime \prime \prime }-19 y^{\prime \prime }+30 y^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.078 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.076 |
|
| \begin{align*}
y^{\left (5\right )}+3 y^{\prime \prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.080 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.796 |
|
| \begin{align*}
2 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\
\end{align*} | [[_3rd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.076 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.062 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.046 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
4 y^{\prime \prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.067 |
|
| \begin{align*}
4 y^{\left (5\right )}-3 y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.073 |
|
| \begin{align*}
y^{\prime \prime \prime }-7 y^{\prime \prime }+16 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.056 |
|
| \begin{align*}
y^{\prime \prime \prime }-8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.054 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }-20 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.064 |
|