2.3.103 Problems 10201 to 10300

Table 2.737: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

10201

73

\begin{align*} y^{\prime }+y&=2 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.530

10202

1018

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-4 x_{3} \\ x_{2}^{\prime }&=-x_{1}-x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{3} \\ \end{align*}

0.530

10203

1453

\begin{align*} x_{1}^{\prime }&=2 x_{1}-\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=\frac {9 x_{1}}{5}-x_{2} \\ \end{align*}

0.530

10204

2036

\begin{align*} 3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.530

10205

4036

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.530

10206

5741

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

0.530

10207

6040

\begin{align*} \left (3 a x +5\right ) y-x \left (a x +5\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

0.530

10208

6319

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

0.530

10209

9648

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=\delta \left (t -2 \pi \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.530

10210

9704

\begin{align*} x^{\prime }&=x-8 y \\ y^{\prime }&=x-3 y \\ \end{align*}

0.530

10211

9847

\begin{align*} y^{\prime \prime }+y^{\prime } x +3 y&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.530

10212

9849

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +7 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.530

10213

12933

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2}&=0 \\ \end{align*}

0.530

10214

16644

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (x \right )-3 \sin \left (x \right ) \\ \end{align*}

0.530

10215

18203

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\sin \left (n x \right ) \\ \end{align*}

0.530

10216

18730

\begin{align*} t y^{\prime \prime }+3 y&=t \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

0.530

10217

20598

\begin{align*} {\mathrm e}^{x} \left (-y^{\prime }+y^{\prime \prime } x \right )&=x^{3} \\ \end{align*}

0.530

10218

21722

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+2 y&=10 \cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

0.530

10219

21740

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=4 x+3 y \\ \end{align*}

0.530

10220

22100

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

0.530

10221

23400

\begin{align*} \left (x -4\right ) y^{\prime \prime }+4 y^{\prime }-\frac {4 y}{x -4}&=0 \\ \end{align*}

0.530

10222

25339

\begin{align*} 2 t y^{\prime \prime }+y^{\prime }+t y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.530

10223

25355

\begin{align*} t^{2} y^{\prime \prime }+t \left (1-2 t \right ) y^{\prime }+\left (t^{2}-t +1\right ) y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.530

10224

2013

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (4 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.531

10225

9931

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}

0.531

10226

11184

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

0.531

10227

14382

\begin{align*} x^{\prime }&=-2 x-3 y \\ y^{\prime }&=-x+4 y \\ \end{align*}

0.531

10228

21161

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ \end{align*}

0.531

10229

22270

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-9 x+6 y+t \\ \end{align*}

0.531

10230

23401

\begin{align*} \left (2+x \right ) y^{\prime \prime }-y^{\prime }+\frac {y}{2+x}&=0 \\ \end{align*}

0.531

10231

24742

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=f \left (x \right ) \\ \end{align*}

0.531

10232

1921

\begin{align*} \left (3 x^{2}+8 x +4\right ) y^{\prime \prime }+\left (16+12 x \right ) y^{\prime }+6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.532

10233

2041

\begin{align*} x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.532

10234

6252

\begin{align*} \left (-x^{2}+2\right ) y-x \left (-x^{2}+2\right ) y^{\prime }+x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.532

10235

6883

\begin{align*} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\ \end{align*}

0.532

10236

7996

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

0.532

10237

8001

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

0.532

10238

9766

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

0.532

10239

11690

\begin{align*} 3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

0.532

10240

11717

\begin{align*} a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y&=0 \\ \end{align*}

0.532

10241

19520

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

0.532

10242

21381

\begin{align*} y^{\prime }&=2 x \\ \end{align*}

0.532

10243

22167

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right )^{2} \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

0.532

10244

25550

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\ \end{align*}

0.532

10245

384

\begin{align*} x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.533

10246

481

\begin{align*} 2 y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.533

10247

525

\begin{align*} y^{\prime \prime } x +4 x^{3} y&=0 \\ \end{align*}

0.533

10248

566

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=1+\delta \left (t -2\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.533

10249

1025

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=x_{1}+3 x_{2}+x_{3} \\ x_{3}^{\prime }&=-2 x_{1}-4 x_{2}-x_{3} \\ \end{align*}

0.533

10250

1191

\begin{align*} y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\ \end{align*}

0.533

10251

2042

\begin{align*} x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-9 x^{2}+5\right ) y^{\prime }+\left (-3 x^{2}+4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.533

10252

2059

\begin{align*} 4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.533

10253

2061

\begin{align*} 9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.533

10254

2703

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=5 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.533

10255

3815

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

0.533

10256

4020

\begin{align*} 3 x^{2} y^{\prime \prime }+x \left (3 x +7\right ) y^{\prime }+\left (1+6 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.533

10257

8171

\begin{align*} p^{\prime }&=p \left (1-p\right ) \\ \end{align*}

0.533

10258

10945

\begin{align*} y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y&=0 \\ \end{align*}

0.533

10259

15445

\begin{align*} x^{\prime }&=1+y \\ y^{\prime }&=1+x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -2 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.533

10260

15578

\begin{align*} y^{\prime }&=\tan \left (x \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

0.533

10261

19158

\begin{align*} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y^{\prime } y&=4 y^{2} \\ \end{align*}

0.533

10262

19516

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.533

10263

22101

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

0.533

10264

22683

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

0.533

10265

22919

\begin{align*} x^{\prime }-x-y&=0 \\ 5 x+y^{\prime }-3 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.533

10266

23577

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+x_{2} \\ \end{align*}

0.533

10267

4050

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.534

10268

4137

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=x^{3}+\sin \left (x \right ) \\ \end{align*}

0.534

10269

8407

\begin{align*} {y^{\prime }}^{2}+y^{2}&=1 \\ \end{align*}

0.534

10270

14742

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.534

10271

22309

\begin{align*} y^{\prime }&=-\frac {4}{x^{2}} \\ y \left (1\right ) &= 2 \\ \end{align*}

0.534

10272

2288

\begin{align*} y_{1}^{\prime }&=5 y_{1}-6 y_{2} \\ y_{2}^{\prime }&=3 y_{1}-y_{2} \\ \end{align*}

0.535

10273

2752

\begin{align*} x_{1}^{\prime }&=2 x_{1}-x_{3} \\ x_{2}^{\prime }&=2 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ x_{4}^{\prime }&=-x_{3}+2 x_{4} \\ \end{align*}

0.535

10274

3237

\begin{align*} x^{\prime }+5 x&=3 t^{2} \\ y+y^{\prime }&={\mathrm e}^{3 t} \\ \end{align*}

0.535

10275

3840

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=-x_{1} \\ x_{3}^{\prime }&=5 x_{3} \\ \end{align*}

0.535

10276

5277

\begin{align*} \left (1-y^{2} x^{2}\right ) y^{\prime }&=\left (y x +1\right ) y^{2} \\ \end{align*}

0.535

10277

9588

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.535

10278

12707

\begin{align*} y^{\prime \prime }&=-\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \\ \end{align*}

0.535

10279

14858

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=4 x+5 y \\ \end{align*}

0.535

10280

16671

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=3 \cos \left (x \right ) x \\ \end{align*}

0.535

10281

21883

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ \end{align*}

0.535

10282

22690

\begin{align*} 4 i^{\prime \prime }+i&=t^{2}+2 \cos \left (4 t \right ) \\ \end{align*}

0.535

10283

24066

\begin{align*} x^{\prime }-x-y^{\prime }&=0 \\ y^{\prime }+3 x-2 y&=0 \\ \end{align*}

0.535

10284

25128

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

0.535

10285

25192

\begin{align*} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\ \end{align*}

0.535

10286

25692

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (-1\right ) &= 2 \\ \end{align*}

0.535

10287

395

\begin{align*} x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\ x \left (0\right ) &= -30 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

0.536

10288

834

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\ \end{align*}

0.536

10289

1421

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}

0.536

10290

3874

\begin{align*} x_{1}^{\prime }&=-x_{1}+2 x_{2}+54 t \,{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=-2 x_{1}+4 x_{2}+9 \,{\mathrm e}^{3 t} \\ \end{align*}

0.536

10291

4072

\begin{align*} x^{2} y^{\prime \prime }+\frac {3 y^{\prime } x}{2}-\frac {\left (x +1\right ) y}{2}&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.536

10292

5865

\begin{align*} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.536

10293

6093

\begin{align*} 2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

0.536

10294

6117

\begin{align*} -a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.536

10295

7648

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.536

10296

9326

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= -2 \\ \end{align*}

0.536

10297

9373

\begin{align*} y^{\prime \prime }+y^{\prime }-x^{2} y&=1 \\ \end{align*}
Series expansion around \(x=0\).

0.536

10298

9478

\begin{align*} x^{\prime }&=3 x-5 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

0.536

10299

9646

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.536

10300

10249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\frac {1}{x} \\ \end{align*}
Series expansion around \(x=0\).

0.536