| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 9801 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9802 |
\begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9803 |
\begin{align*}
x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9804 |
\begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9805 |
\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.503 |
|
| 9806 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9807 |
\begin{align*}
x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y&=x^{4}+2 x -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.503 |
|
| 9808 |
\begin{align*}
\cos \left (x \right ) \sin \left (y\right ) y^{\prime }-\cos \left (x \right ) \cos \left (y\right )-\cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9809 |
\begin{align*}
v^{\prime }-2 v+2 w^{\prime }&=2-4 \,{\mathrm e}^{2 x} \\
2 v^{\prime }-3 v+3 w^{\prime }-w&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| 9810 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.503 |
|
| 9811 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.504 |
|
| 9812 |
\begin{align*}
9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9813 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }+\left (12 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9814 |
\begin{align*}
y^{\prime \prime }+t y^{\prime }+y \,{\mathrm e}^{t}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9815 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=t^{{3}/{2}} {\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9816 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+2 x_{2}-x_{3} \\
x_{2}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{1}+3 x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9817 |
\begin{align*}
y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.504 |
|
| 9818 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=-6 \,{\mathrm e}^{\pi -t} \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 4 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.504 |
|
| 9819 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9820 |
\begin{align*}
\left (x^{2}-9\right ) y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9821 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=9 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9822 |
\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.504 |
|
| 9823 |
\begin{align*}
y^{\prime \prime }-4 y&=t \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9824 |
\begin{align*}
\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= -{\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9825 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9826 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9827 |
\begin{align*}
y^{\prime }&=1+y \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9828 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9829 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| 9830 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9831 |
\begin{align*}
\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9832 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9833 |
\begin{align*}
2 x^{2} y^{\prime \prime }+2 y^{\prime } x -y x&=1 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.505 |
|
| 9834 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9835 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y&=36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9836 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9837 |
\begin{align*}
y^{\prime \prime }+4 y&=t^{2}+3 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9838 | \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.505 |
|
| 9839 |
\begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.505 |
|
| 9840 |
\begin{align*}
x^{\prime }&=-x+4 y \\
y^{\prime }&=3 x-5 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.505 |
|
| 9841 |
\begin{align*}
y^{\prime }+y&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9842 |
\begin{align*}
y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\lambda x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9843 |
\begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{i \omega t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| 9844 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9845 |
\begin{align*}
\left (x^{3}+1\right ) y^{\prime }&=3 x^{2} \tan \left (x \right ) \\
y \left (0\right ) &= \frac {\pi }{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9846 |
\begin{align*}
\left (-x +3\right ) y-\left (-3 x +4\right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.506 |
|
| 9847 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-7 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9848 |
\begin{align*}
\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+y \left (y-x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9849 |
\begin{align*}
y^{\prime }&=b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9850 |
\begin{align*}
y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.506 |
|
| 9851 |
\begin{align*}
x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.506 |
|
| 9852 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9853 |
\begin{align*}
y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right )&=\cos \left (2 t \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.506 |
|
| 9854 |
\begin{align*}
x^{\prime }&=-3 x+y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9855 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9856 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\left (x^{2}+x \right ) {\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9857 |
\begin{align*}
-2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9858 | \begin{align*}
y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.506 |
|
| 9859 |
\begin{align*}
\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9860 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| 9861 |
\begin{align*}
\left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y&=2 t \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.506 |
|
| 9862 |
\begin{align*}
y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9863 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9864 |
\begin{align*}
\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (1-4 x \right ) y^{\prime }+2 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9865 |
\begin{align*}
4 x^{2} \left (4 x^{2}+1\right ) y^{\prime \prime }+32 x^{3} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9866 |
\begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }&=-16 \,{\mathrm e}^{-2 x} \left (-x^{3}+x^{2}+x +1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9867 |
\begin{align*}
x_{1}^{\prime }&=-x_{2}+x_{3} \\
x_{2}^{\prime }&=2 x_{1}-3 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9868 |
\begin{align*}
2 {y^{\prime }}^{5}+2 y^{\prime } x&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.507 |
|
| 9869 |
\begin{align*}
6 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.507 |
|
| 9870 |
\begin{align*}
y^{\prime \prime }-9 y&=x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9871 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9872 |
\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.507 |
|
| 9873 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9874 |
\begin{align*}
y^{\prime \prime } x +4 y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9875 |
\begin{align*}
x^{\prime }&=-4 x-10 y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9876 |
\begin{align*}
y^{\prime }&=y^{2}-3 y+2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9877 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=-648 t^{2} {\mathrm e}^{5 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9878 | \begin{align*}
y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.507 |
|
| 9879 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.507 |
|
| 9880 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9881 |
\begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9882 |
\begin{align*}
x^{\prime }+2 y&=4 \,{\mathrm e}^{2 t} \\
x+y^{\prime }-y&=2 \,{\mathrm e}^{2 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 7 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9883 |
\begin{align*}
y^{\prime }+3 y&=5 \\
y \left (0\right ) &= y_{0} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9884 |
\begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| 9885 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| 9886 |
\begin{align*}
y^{\prime \prime }&=\frac {\left (7 a \,x^{2}+5\right ) y^{\prime }}{x \left (a \,x^{2}+1\right )}-\frac {\left (15 a \,x^{2}+5\right ) y}{x^{2} \left (a \,x^{2}+1\right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.508 |
|
| 9887 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| 9888 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| 9889 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| 9890 |
\begin{align*}
y&=\tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.508 |
|
| 9891 |
\begin{align*}
y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9892 |
\begin{align*}
y^{\prime \prime }+4 y&=g \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9893 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=5 \sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9894 |
\begin{align*}
-\left (a^{2} x^{2}+1\right ) y+4 y^{\prime } x +4 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9895 |
\begin{align*}
c y^{2}+b x y y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x^{2} y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.509 |
|
| 9896 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+x_{2}-8 \\
x_{2}^{\prime }&=x_{1}+x_{2}+3 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9897 | \begin{align*}
x^{\prime }&=2 x+y-z \\
y^{\prime }&=-x+2 z \\
z^{\prime }&=-x-2 y+4 z \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.509 |
|
| 9898 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=4 x \,{\mathrm e}^{-3 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| 9899 |
\begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.509 |
|
| 9900 |
\begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.509 |
|