| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 9501 |
\begin{align*}
4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9502 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\
y \left (0\right ) &= {\frac {2}{3}} \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9503 |
\begin{align*}
\left (y^{\prime } x +y\right )^{2}+3 x^{5} \left (y^{\prime } x -2 y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.483 |
|
| 9504 |
\begin{align*}
y^{\prime \prime }+n^{2} y&={\mathrm e}^{x} x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9505 |
\begin{align*}
x^{\prime }-6 x+3 y&=8 \,{\mathrm e}^{t} \\
y^{\prime }-2 x-y&=4 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9506 |
\begin{align*}
y^{\prime }+y^{\prime \prime \prime }&=x +\sin \left (x \right )+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9507 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| 9508 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9509 |
\begin{align*}
4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9510 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9511 |
\begin{align*}
2 \left (1-x \right ) x \left (1-y\right ) \left (x -y\right ) y y^{\prime \prime }&=-y^{2} \left (1-y^{2}\right )+2 \left (1-y\right ) y \left (x^{2}+y-2 y x \right ) y^{\prime }+\left (1-x \right ) x \left (x -2 y-2 y x +3 y^{2}\right ) {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.484 |
|
| 9512 |
\begin{align*}
y^{\prime }+y&=x y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9513 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9514 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9515 |
\begin{align*}
z^{\prime \prime }-4 z^{\prime }+13 z&=0 \\
z \left (0\right ) &= 7 \\
z^{\prime }\left (0\right ) &= 42 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9516 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=3 t \\
y \left (0\right ) &= {\frac {23}{12}} \\
y^{\prime }\left (0\right ) &= -{\frac {3}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9517 |
\begin{align*}
y^{\prime \prime }+9 y&=36 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9518 | \begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=-5 x \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.484 |
|
| 9519 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-4 x^{2}+3\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9520 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| 9521 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=3 \,{\mathrm e}^{x} \sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9522 |
\begin{align*}
y^{\prime \prime }-y&=\operatorname {Heaviside}\left (-1+t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9523 |
\begin{align*}
y^{\prime }&=a f \left (y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9524 |
\begin{align*}
y^{\prime \prime }+2 y&=-{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9525 |
\begin{align*}
y^{\prime \prime }+\tan \left (x \right ) y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9526 |
\begin{align*}
y^{\prime \prime \prime }+a^{2} y^{\prime }&=\sin \left (a x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9527 |
\begin{align*}
3 x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9528 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9529 |
\begin{align*}
x^{\prime }+x+2 y^{\prime }+3 y&=0 \\
x^{\prime }-2 x+5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9530 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| 9531 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9532 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9533 |
\begin{align*}
\left (x^{2}+4 x +3\right ) y^{\prime \prime }-\left (-x^{2}+4 x +5\right ) y^{\prime }-\left (2+x \right ) y&=0 \\
y \left (-2\right ) &= 2 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9534 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9535 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9536 |
\begin{align*}
y y^{\prime \prime }&=-y \left (f^{\prime }\left (x \right )-y^{2} g^{\prime }\left (x \right )\right )+\left (f \left (x \right )+g \left (x \right ) y^{2}\right ) y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.486 |
|
| 9537 |
\begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.486 |
|
| 9538 | \begin{align*}
y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.486 |
|
| 9539 |
\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.486 |
|
| 9540 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.486 |
|
| 9541 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+8 y&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9542 |
\(\left [\begin {array}{ccc} 1 & 3 & -6 \\ 0 & 2 & 2 \\ 0 & -1 & 5 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.486 |
|
| 9543 |
\begin{align*}
x^{\prime }&=-2 x-2 y \\
y^{\prime }&=-2 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9544 |
\begin{align*}
y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9545 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +4 \left (x^{4}-1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9546 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-x +2\right ) y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.486 |
|
| 9547 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9548 |
\begin{align*}
y^{\prime \prime }+2 y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9549 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (2 x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9550 |
\begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=5 \cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9551 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.486 |
|
| 9552 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (3 x \right )+4 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9553 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9554 |
\begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{2}\right ) &= 0 \\
x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| 9555 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9556 |
\begin{align*}
{y^{\prime }}^{3}-\left (b x +a \right ) y^{\prime }+b y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9557 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9558 |
\begin{align*}
-6 y-2 \left (1-2 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9559 | \begin{align*}
\left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.487 |
|
| 9560 |
\begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9561 |
\begin{align*}
x^{\prime }&=z \\
y^{\prime }&=y \\
z^{\prime }&=x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
z \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9562 |
\begin{align*}
x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9563 |
\begin{align*}
\left (-y+y^{\prime } x \right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right )^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.487 |
|
| 9564 |
\begin{align*}
\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9565 |
\begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9566 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9567 |
\begin{align*}
m x^{\prime \prime }&=f \left (x^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9568 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9569 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=10 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9570 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=-2 \delta \left (t -2\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9571 |
\begin{align*}
y^{2} {y^{\prime }}^{2}+y^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9572 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2+{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9573 |
\begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9574 |
\begin{align*}
y^{\prime \prime }+y&=g \left (t \right ) \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9575 |
\begin{align*}
\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+b^{2}-y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9576 |
\begin{align*}
2 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3+7 x \right ) y^{\prime }-3 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| 9577 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9578 | \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.487 |
|
| 9579 |
\begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=f \left (t \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| 9580 |
\begin{align*}
x^{6} {y^{\prime }}^{3}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.488 |
|
| 9581 |
\begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=\cos \left (t \right ) \\
x \left (0\right ) &= {\frac {1}{10}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9582 |
\begin{align*}
x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\
y \left (2\right ) &= 5 \\
y^{\prime }\left (2\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9583 |
\begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.488 |
|
| 9584 |
\(\left [\begin {array}{ccc} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.488 |
|
| 9585 |
\begin{align*}
v^{\prime }&=\frac {K -v}{R C} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9586 |
\begin{align*}
\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9587 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9588 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9589 |
\begin{align*}
-6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9590 |
\begin{align*}
x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.488 |
|
| 9591 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{t}+{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| 9592 |
\begin{align*}
y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=\left (x^{2}+1\right ) \sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 9593 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 9594 |
\begin{align*}
y^{\prime }&=\sin \left (t \right )^{2} \\
y \left (\frac {\pi }{6}\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 9595 |
\begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.489 |
|
| 9596 |
\begin{align*}
{y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.489 |
|
| 9597 |
\begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 9598 | \begin{align*}
x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✗ | 0.489 |
|
| 9599 |
\begin{align*}
y^{\prime \prime }+4 y&=3 \sin \left (2 t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| 9600 |
\begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.489 |
|