| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 7901 |
\begin{align*}
2 y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| 7902 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| 7903 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7904 |
\begin{align*}
4 y+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7905 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7906 |
\begin{align*}
{y^{\prime }}^{3}+a x y^{\prime }-a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.397 |
|
| 7907 |
\begin{align*}
y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.397 |
|
| 7908 |
\begin{align*}
y^{\prime }+y^{\prime \prime \prime }&=x^{3}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7909 |
\begin{align*}
2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y^{\prime } y+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.397 |
|
| 7910 |
\begin{align*}
{y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.397 |
|
| 7911 |
\begin{align*}
x^{\prime }&=5 x-y \\
y^{\prime }&=3 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7912 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=x^{3}+x +{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7913 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=5 \sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7914 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7915 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x}-x +\sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7916 |
\begin{align*}
4 y+y^{\prime \prime }&=20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| 7917 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7918 | \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y&=\left (x +1\right )^{3} {\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.398 |
|
| 7919 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7920 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7921 |
\begin{align*}
x^{\prime }&=x-3 y \\
y^{\prime }&=-2 x+2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7922 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=g \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7923 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}-x_{3} \\
x_{2}^{\prime }&=-x_{2} \\
x_{3}^{\prime }&=x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7924 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7925 |
\begin{align*}
2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=\sinh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7926 |
\begin{align*}
y^{\prime \prime \prime \prime }&=\cos \left (x \right )+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7927 |
\begin{align*}
\arctan \left (y x \right )+\frac {y x -2 x y^{2}}{y^{2} x^{2}+1}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{y^{2} x^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.398 |
|
| 7928 |
\begin{align*}
4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7929 |
\begin{align*}
\left (x^{2}-y^{4}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7930 |
\begin{align*}
x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.398 |
|
| 7931 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7932 |
\begin{align*}
y^{\prime }-3 y&=\delta \left (t -2\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7933 |
\begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=4 x+3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7934 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7935 |
\begin{align*}
y^{\prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7936 |
\begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.398 |
|
| 7937 | \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.398 |
|
| 7938 |
\begin{align*}
f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.398 |
|
| 7939 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7940 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7941 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7942 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7943 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7944 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7945 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.398 |
|
| 7946 |
\begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7947 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=4 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7948 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7949 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7950 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| 7951 |
\begin{align*}
y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7952 |
\begin{align*}
x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7953 |
\begin{align*}
y_{1}^{\prime }&=-6 y_{1}-3 y_{2} \\
y_{2}^{\prime }&=y_{1}-2 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7954 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7955 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7956 |
\begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7957 | \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.399 |
|
| 7958 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7959 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y x&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7960 |
\begin{align*}
y^{\prime }&=x -y \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7961 |
\begin{align*}
y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7962 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=\left (x -1\right ) {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7963 |
\begin{align*}
y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7964 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7965 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (-x^{2}+9\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7966 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| 7967 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7968 |
\begin{align*}
y_{1}^{\prime }&=-y_{1}-4 y_{2} \\
y_{2}^{\prime }&=-y_{1}-y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7969 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{t}&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7970 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7971 |
\begin{align*}
x^{\prime \prime }-4 x&=\cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7972 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7973 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=3 \delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7974 |
\begin{align*}
\sin \left (y \right )^{2}&=x^{\prime } \\
x \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7975 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7976 | \begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=-5 x-y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.400 |
|
| 7977 |
\begin{align*}
\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-b^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.400 |
|
| 7978 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7979 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7980 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| 7981 |
\begin{align*}
\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7982 |
\begin{align*}
y^{\prime }+i y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7983 |
\begin{align*}
\left (y-2 y^{\prime } x \right )^{2}&={y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7984 |
\begin{align*}
6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7985 |
\begin{align*}
\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7986 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7987 |
\begin{align*}
y^{\prime \prime }&=\frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7988 |
\begin{align*}
\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7989 |
\begin{align*}
x^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7990 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+10 x&=0 \\
x \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7991 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 7992 |
\begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7993 |
\begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7994 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=-256 t^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7995 | \begin{align*}
y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.401 |
|
| 7996 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7997 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7998 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| 7999 |
\begin{align*}
s y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.401 |
|
| 8000 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.401 |
|