2.3.80 Problems 7901 to 8000

Table 2.691: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

7901

22831

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.396

7902

23023

\begin{align*} x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\ \end{align*}

0.396

7903

964

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\ \end{align*}

0.397

7904

3187

\begin{align*} 4 y+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

0.397

7905

4476

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=4 \sin \left (x \right ) \\ \end{align*}

0.397

7906

5622

\begin{align*} {y^{\prime }}^{3}+a x y^{\prime }-a y&=0 \\ \end{align*}

0.397

7907

6325

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

0.397

7908

6611

\begin{align*} y^{\prime }+y^{\prime \prime \prime }&=x^{3}+\cos \left (x \right ) \\ \end{align*}

0.397

7909

12909

\begin{align*} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y^{\prime } y+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\ \end{align*}

0.397

7910

14059

\begin{align*} {y^{\prime }}^{3}-4 x y^{\prime } y+8 y^{2}&=0 \\ \end{align*}

0.397

7911

14395

\begin{align*} x^{\prime }&=5 x-y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.397

7912

14658

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=x^{3}+x +{\mathrm e}^{-2 x} \\ \end{align*}

0.397

7913

16676

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=5 \sin \left (x \right )^{2} \\ \end{align*}

0.397

7914

23089

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\ \end{align*}

0.397

7915

24589

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x}-x +\sin \left (3 x \right ) \\ \end{align*}

0.397

7916

24702

\begin{align*} 4 y+y^{\prime \prime }&=20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right ) \\ \end{align*}

0.397

7917

840

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

0.398

7918

1788

\begin{align*} \left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y&=\left (x +1\right )^{3} {\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.398

7919

1858

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.398

7920

2597

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

0.398

7921

2702

\begin{align*} x^{\prime }&=x-3 y \\ y^{\prime }&=-2 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 5 \\ \end{align*}

0.398

7922

2718

\begin{align*} y^{\prime \prime \prime \prime }-y&=g \left (t \right ) \\ \end{align*}

0.398

7923

3911

\begin{align*} x_{1}^{\prime }&=-2 x_{1}-x_{3} \\ x_{2}^{\prime }&=-x_{2} \\ x_{3}^{\prime }&=x_{1} \\ \end{align*}

0.398

7924

5571

\begin{align*} y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\ \end{align*}

0.398

7925

6634

\begin{align*} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&=\sinh \left (x \right ) \\ \end{align*}

0.398

7926

6728

\begin{align*} y^{\prime \prime \prime \prime }&=\cos \left (x \right )+y \\ \end{align*}

0.398

7927

6952

\begin{align*} \arctan \left (y x \right )+\frac {y x -2 x y^{2}}{y^{2} x^{2}+1}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{y^{2} x^{2}+1}&=0 \\ \end{align*}

0.398

7928

8095

\begin{align*} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.398

7929

8747

\begin{align*} \left (x^{2}-y^{4}\right ) y^{\prime }-y x&=0 \\ \end{align*}

0.398

7930

8803

\begin{align*} x^{2} y y^{\prime \prime }&=-y^{2}+x^{2} {y^{\prime }}^{2} \\ \end{align*}

0.398

7931

9370

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.398

7932

9640

\begin{align*} y^{\prime }-3 y&=\delta \left (t -2\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.398

7933

9670

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=4 x+3 y \\ \end{align*}

0.398

7934

9785

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

0.398

7935

10260

\begin{align*} y^{\prime }&=a \\ \end{align*}

0.398

7936

11714

\begin{align*} \left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

0.398

7937

14560

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

0.398

7938

14843

\begin{align*} f \left (t \right ) x^{\prime \prime }+x g \left (t \right )&=0 \\ \end{align*}

0.398

7939

16124

\begin{align*} y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

0.398

7940

16472

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

0.398

7941

16509

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.398

7942

16511

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

0.398

7943

18804

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}

0.398

7944

18830

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.398

7945

19168

\begin{align*} \sin \left (x \right )^{2} y^{\prime \prime }&=2 y \\ \end{align*}

0.398

7946

21126

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=0 \\ x \left (0\right ) &= 0 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

0.398

7947

21220

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=4 x-y \\ \end{align*}

0.398

7948

21585

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\ \end{align*}

0.398

7949

23022

\begin{align*} y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\ \end{align*}

0.398

7950

23612

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.398

7951

337

\begin{align*} y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\ \end{align*}

0.399

7952

1423

\begin{align*} x_{1}^{\prime }&=-\frac {5 x_{1}}{2}+\frac {3 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {3 x_{1}}{2}+\frac {x_{2}}{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= -1 \\ \end{align*}

0.399

7953

2244

\begin{align*} y_{1}^{\prime }&=-6 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

0.399

7954

2595

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\ \end{align*}

0.399

7955

7099

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.399

7956

7108

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

0.399

7957

7762

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\ \end{align*}

0.399

7958

10813

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

0.399

7959

14739

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y x&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Series expansion around \(x=0\).

0.399

7960

19583

\begin{align*} y^{\prime }&=x -y \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.399

7961

20022

\begin{align*} y^{2} \left (1+{y^{\prime }}^{2}\right )&=r^{2} \\ \end{align*}

0.399

7962

20365

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=\left (x -1\right ) {\mathrm e}^{2 x} \\ \end{align*}

0.399

7963

23927

\begin{align*} y^{\prime \prime } x +x {y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

0.399

7964

24022

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

0.399

7965

24106

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (-x^{2}+9\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.399

7966

25115

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

0.399

7967

1447

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

0.400

7968

2241

\begin{align*} y_{1}^{\prime }&=-y_{1}-4 y_{2} \\ y_{2}^{\prime }&=-y_{1}-y_{2} \\ \end{align*}

0.400

7969

2625

\begin{align*} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{t}&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

0.400

7970

3745

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

0.400

7971

14312

\begin{align*} x^{\prime \prime }-4 x&=\cos \left (2 t \right ) \\ \end{align*}

0.400

7972

15107

\begin{align*} y^{\prime \prime } x&=y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \\ \end{align*}

0.400

7973

15242

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.400

7974

17110

\begin{align*} \sin \left (y \right )^{2}&=x^{\prime } \\ x \left (0\right ) &= 0 \\ \end{align*}

0.400

7975

18191

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

0.400

7976

18668

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=-5 x-y \\ \end{align*}

0.400

7977

20034

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-b^{2}&=0 \\ \end{align*}

0.400

7978

20893

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.400

7979

21539

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\ \end{align*}

0.400

7980

25327

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.400

7981

1885

\begin{align*} \left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.401

7982

8871

\begin{align*} y^{\prime }+i y&=x \\ \end{align*}

0.401

7983

10196

\begin{align*} \left (y-2 y^{\prime } x \right )^{2}&={y^{\prime }}^{3} \\ \end{align*}

0.401

7984

10570

\begin{align*} 6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y&=0 \\ \end{align*}

0.401

7985

10674

\begin{align*} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y&=0 \\ \end{align*}

0.401

7986

10789

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+x^{3} y&=0 \\ \end{align*}

0.401

7987

11291

\begin{align*} y^{\prime \prime }&=\frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \\ \end{align*}

0.401

7988

11734

\begin{align*} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1&=0 \\ \end{align*}

0.401

7989

14196

\begin{align*} x^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

0.401

7990

14926

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.401

7991

16393

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=y^{\prime } \\ \end{align*}

0.401

7992

16507

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.401

7993

16741

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\ \end{align*}

0.401

7994

17443

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=-256 t^{3} \\ \end{align*}

0.401

7995

17756

\begin{align*} y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\ \end{align*}

0.401

7996

18863

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

0.401

7997

20387

\begin{align*} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\ \end{align*}

0.401

7998

20440

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\ \end{align*}

0.401

7999

21278

\begin{align*} s y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.401

8000

21627

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.401