2.3.72 Problems 7101 to 7200

Table 2.675: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

7101

2798

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-2 y \\ \end{align*}

0.362

7102

3827

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= -2 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.362

7103

5659

\begin{align*} \left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\ \end{align*}

0.362

7104

6554

\begin{align*} \operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime }&=0 \\ \end{align*}

0.362

7105

7071

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.362

7106

7346

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\ \end{align*}

0.362

7107

7786

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\ \end{align*}

0.362

7108

8051

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

0.362

7109

8484

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.362

7110

8908

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=3 \,{\mathrm e}^{-x}+2 x^{2} \\ \end{align*}

0.362

7111

9266

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.362

7112

9697

\begin{align*} x^{\prime }&=2 x+4 y \\ y^{\prime }&=-x+6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 6 \\ \end{align*}

0.362

7113

9836

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.362

7114

12632

\begin{align*} y^{\prime \prime }&=-\frac {a y}{\left (x^{2}-1\right )^{2}} \\ \end{align*}

0.362

7115

14405

\begin{align*} x^{\prime }&=9 y \\ y^{\prime }&=-x \\ \end{align*}

0.362

7116

14727

\begin{align*} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.362

7117

14728

\begin{align*} y^{\prime \prime }+8 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.362

7118

15246

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.362

7119

16030

\begin{align*} x^{\prime }&=2 x+4 y \\ y^{\prime }&=3 x+6 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.362

7120

17108

\begin{align*} y^{\prime }&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

0.362

7121

17397

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

0.362

7122

17632

\begin{align*} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

0.362

7123

18111

\begin{align*} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2}&=0 \\ \end{align*}

0.362

7124

18823

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

0.362

7125

20047

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

0.362

7126

23041

\begin{align*} x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\ \end{align*}

0.362

7127

25181

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2} \\ \end{align*}

0.362

7128

7790

\begin{align*} y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\ \end{align*}

0.363

7129

8863

\begin{align*} y^{\prime }+5 y&=2 \\ \end{align*}

0.363

7130

12542

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x +f \left (x \right ) y&=0 \\ \end{align*}

0.363

7131

14216

\begin{align*} Q^{\prime }&=\frac {Q}{4+Q^{2}} \\ \end{align*}

0.363

7132

15500

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x&=0 \\ \end{align*}

0.363

7133

16638

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

0.363

7134

16812

\begin{align*} y^{\prime \prime }-16 y&=\delta \left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.363

7135

20413

\begin{align*} x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

0.363

7136

21644

\begin{align*} y^{\prime }&=x^{2} \\ y \left (2\right ) &= 1 \\ \end{align*}
Series expansion around \(x=2\).

0.363

7137

22921

\begin{align*} 2 x^{\prime }-6 x+3 y^{\prime }-2 y&=0 \\ 7 x^{\prime }+4 x+7 y^{\prime }+20 y&=0 \\ \end{align*}

0.363

7138

23106

\begin{align*} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x}&=\frac {y^{3}}{x^{3}} \\ \end{align*}

0.363

7139

23456

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\ \end{align*}

0.363

7140

24433

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= {\mathrm e}^{3} \\ \end{align*}

0.363

7141

24725

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

0.363

7142

24785

\begin{align*} \left (x -y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

0.363

7143

1924

\begin{align*} y^{\prime \prime }+5 y^{\prime } x -\left (-x^{2}+3\right ) y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

0.364

7144

2585

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

0.364

7145

5727

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

0.364

7146

5791

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.364

7147

7758

\begin{align*} y^{\prime \prime }+25 y&=5 x^{2}+x \\ \end{align*}

0.364

7148

8485

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.364

7149

8565

\begin{align*} \left (2+x \right ) y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.364

7150

8852

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.364

7151

9340

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2}+2 x +2 \\ \end{align*}

0.364

7152

9475

\begin{align*} x^{\prime }&=5 x+3 y \\ y^{\prime }&=-6 x-4 y \\ \end{align*}

0.364

7153

14055

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

0.364

7154

14283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.364

7155

14332

\begin{align*} x^{\prime \prime }-x&=\frac {1}{t} \\ \end{align*}

0.364

7156

16849

\begin{align*} \sin \left (x \right ) y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

0.364

7157

17438

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=32 t \\ \end{align*}

0.364

7158

17828

\begin{align*} x^{\prime }&=8 x-y \\ y^{\prime }&=x+6 y \\ \end{align*}

0.364

7159

17833

\begin{align*} x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\ \end{align*}

0.364

7160

18308

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y&=0 \\ \end{align*}

0.364

7161

22057

\begin{align*} y^{\prime }-3 y&=6 \\ \end{align*}

0.364

7162

22142

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

0.364

7163

22887

\begin{align*} y^{\prime }+6 y&=x^{\prime } \\ 3 x-x^{\prime }&=2 y^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.364

7164

23457

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

0.364

7165

23477

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ \end{align*}

0.364

7166

23490

\begin{align*} 4 y+y^{\prime \prime }&=4 x^{3}-8 x^{2}-14 x +7 \\ \end{align*}

0.364

7167

23701

\begin{align*} y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ y \left (3\right ) &= 2 \\ y^{\prime }\left (3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=3\).

0.364

7168

24628

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \\ \end{align*}

0.364

7169

24737

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=\frac {6}{1+{\mathrm e}^{-2 x}} \\ \end{align*}

0.364

7170

25136

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\ \end{align*}

0.364

7171

25307

\begin{align*} y^{\prime }-3 y&=3+\delta \left (t -2\right ) \\ y \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

0.364

7172

25565

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=f \\ \end{align*}

0.364

7173

601

\begin{align*} x^{\prime }&=-3 y \\ y^{\prime }&=3 x \\ \end{align*}

0.365

7174

612

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

0.365

7175

922

\begin{align*} x^{\prime }&=-3 y \\ y^{\prime }&=3 x \\ \end{align*}

0.365

7176

1519

\begin{align*} y^{\prime }&=2 y \\ \end{align*}

0.365

7177

2259

\begin{align*} y_{1}^{\prime }&=-13 y_{1}+16 y_{2} \\ y_{2}^{\prime }&=-9 y_{1}+11 y_{2} \\ \end{align*}

0.365

7178

2596

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\ \end{align*}

0.365

7179

2598

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\ \end{align*}

0.365

7180

6432

\begin{align*} y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\ \end{align*}

0.365

7181

6491

\begin{align*} 5 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

0.365

7182

7600

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

0.365

7183

8847

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=16 x_{1}-5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

0.365

7184

8941

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

0.365

7185

10015

\begin{align*} y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\ \end{align*}

0.365

7186

10419

\begin{align*} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

0.365

7187

10741

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y&=0 \\ \end{align*}

0.365

7188

13156

\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\)

N/A

N/A

N/A

0.365

7189

14047

\begin{align*} \left (2 y^{\prime } x -y\right )^{2}&=8 x^{3} \\ \end{align*}

0.365

7190

15468

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=3 x-y \\ \end{align*}

0.365

7191

15574

\begin{align*} y^{\prime }&=\frac {1}{x -1} \\ y \left (2\right ) &= 1 \\ \end{align*}

0.365

7192

16126

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\ \end{align*}

0.365

7193

16740

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\ \end{align*}

0.365

7194

18020

\begin{align*} x&=\frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \\ \end{align*}

0.365

7195

21210

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.365

7196

25138

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\ \end{align*}

0.365

7197

25374

\begin{align*} y_{1}^{\prime }&=3 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.365

7198

225

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

0.366

7199

1790

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2+x \\ y \left (0\right ) &= -{\frac {1}{3}} \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.366

7200

4534

\begin{align*} x^{\prime }-x+3 y&=0 \\ 3 x-y^{\prime }+y&=0 \\ \end{align*}

0.366