| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 7101 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7102 |
\begin{align*}
x_{1}^{\prime }&=-2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -2 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7103 |
\begin{align*}
\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7104 |
\begin{align*}
\operatorname {a2} x \left (1-y\right ) y^{2}+\operatorname {a3} \,x^{3} y^{2} \left (1+y\right )+\left (1-y\right )^{3} \left (\operatorname {a0} +\operatorname {a1} y^{2}\right )+2 x \left (1-y\right ) y y^{\prime }-x^{2} \left (1-3 y\right ) {y^{\prime }}^{2}+2 x^{2} \left (1-y\right ) y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.362 |
|
| 7105 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7106 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7107 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7108 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.362 |
|
| 7109 |
\begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7110 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=3 \,{\mathrm e}^{-x}+2 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7111 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7112 |
\begin{align*}
x^{\prime }&=2 x+4 y \\
y^{\prime }&=-x+6 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7113 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7114 |
\begin{align*}
y^{\prime \prime }&=-\frac {a y}{\left (x^{2}-1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7115 |
\begin{align*}
x^{\prime }&=9 y \\
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7116 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7117 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime } x -4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7118 | \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.362 |
|
| 7119 |
\begin{align*}
x^{\prime }&=2 x+4 y \\
y^{\prime }&=3 x+6 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7120 |
\begin{align*}
y^{\prime }&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7121 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7122 |
\begin{align*}
x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7123 |
\begin{align*}
y^{\prime \prime \prime }+{y^{\prime \prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7124 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7125 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7126 |
\begin{align*}
x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7127 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| 7128 |
\begin{align*}
y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7129 |
\begin{align*}
y^{\prime }+5 y&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7130 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 y^{\prime } x +f \left (x \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.363 |
|
| 7131 |
\begin{align*}
Q^{\prime }&=\frac {Q}{4+Q^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7132 |
\begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7133 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7134 |
\begin{align*}
y^{\prime \prime }-16 y&=\delta \left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7135 |
\begin{align*}
x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7136 |
\begin{align*}
y^{\prime }&=x^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7137 |
\begin{align*}
2 x^{\prime }-6 x+3 y^{\prime }-2 y&=0 \\
7 x^{\prime }+4 x+7 y^{\prime }+20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7138 | \begin{align*}
y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x}&=\frac {y^{3}}{x^{3}} \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 0.363 |
|
| 7139 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7140 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= {\mathrm e}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7141 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7142 |
\begin{align*}
\left (x -y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| 7143 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime } x -\left (-x^{2}+3\right ) y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7144 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7145 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7146 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7147 |
\begin{align*}
y^{\prime \prime }+25 y&=5 x^{2}+x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7148 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7149 |
\begin{align*}
\left (2+x \right ) y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7150 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7151 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2}+2 x +2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7152 |
\begin{align*}
x^{\prime }&=5 x+3 y \\
y^{\prime }&=-6 x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7153 |
\begin{align*}
{y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.364 |
|
| 7154 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7155 |
\begin{align*}
x^{\prime \prime }-x&=\frac {1}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7156 |
\begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=\frac {\pi }{2}\). |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7157 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=32 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7158 | \begin{align*}
x^{\prime }&=8 x-y \\
y^{\prime }&=x+6 y \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.364 |
|
| 7159 |
\begin{align*}
x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7160 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.364 |
|
| 7161 |
\begin{align*}
y^{\prime }-3 y&=6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7162 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7163 |
\begin{align*}
y^{\prime }+6 y&=x^{\prime } \\
3 x-x^{\prime }&=2 y^{\prime } \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7164 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7165 |
\begin{align*}
y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7166 |
\begin{align*}
4 y+y^{\prime \prime }&=4 x^{3}-8 x^{2}-14 x +7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7167 |
\begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
y \left (3\right ) &= 2 \\
y^{\prime }\left (3\right ) &= 0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7168 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7169 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=\frac {6}{1+{\mathrm e}^{-2 x}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.364 |
|
| 7170 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7171 |
\begin{align*}
y^{\prime }-3 y&=3+\delta \left (t -2\right ) \\
y \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7172 |
\begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| 7173 |
\begin{align*}
x^{\prime }&=-3 y \\
y^{\prime }&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7174 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7175 |
\begin{align*}
x^{\prime }&=-3 y \\
y^{\prime }&=3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7176 |
\begin{align*}
y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7177 | \begin{align*}
y_{1}^{\prime }&=-13 y_{1}+16 y_{2} \\
y_{2}^{\prime }&=-9 y_{1}+11 y_{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.365 |
|
| 7178 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7179 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7180 |
\begin{align*}
y y^{\prime \prime }&=-y^{2} x^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.365 |
|
| 7181 |
\begin{align*}
5 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.365 |
|
| 7182 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7183 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=16 x_{1}-5 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7184 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7185 |
\begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7186 |
\begin{align*}
y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.365 |
|
| 7187 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7188 |
\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.365 |
|
| 7189 |
\begin{align*}
\left (2 y^{\prime } x -y\right )^{2}&=8 x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7190 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=3 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7191 |
\begin{align*}
y^{\prime }&=\frac {1}{x -1} \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7192 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7193 |
\begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7194 |
\begin{align*}
x&=\frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.365 |
|
| 7195 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7196 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| 7197 | \begin{align*}
y_{1}^{\prime }&=3 y_{1}-4 y_{2} \\
y_{2}^{\prime }&=y_{1}-y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.365 |
|
| 7198 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| 7199 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2+x \\
y \left (0\right ) &= -{\frac {1}{3}} \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.366 |
|
| 7200 |
\begin{align*}
x^{\prime }-x+3 y&=0 \\
3 x-y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.366 |
|