2.3.70 Problems 6901 to 7000

Table 2.671: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

6901

21291

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.353

6902

22138

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\ \end{align*}

0.353

6903

24026

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

0.353

6904

24091

\begin{align*} y^{\prime \prime } x +y^{\prime }-x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.353

6905

24434

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.353

6906

24474

\begin{align*} y^{\prime \prime }-4 y^{\prime }+7 y&=0 \\ \end{align*}

0.353

6907

24794

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.353

6908

25328

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.353

6909

1287

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.354

6910

1818

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\ \end{align*}

0.354

6911

1925

\begin{align*} y^{\prime \prime }-2 y^{\prime } x -\left (3 x^{2}+2\right ) y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}
Series expansion around \(x=0\).

0.354

6912

1926

\begin{align*} y^{\prime \prime }+3 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Series expansion around \(x=0\).

0.354

6913

2838

\begin{align*} y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.354

6914

3433

\begin{align*} y^{\prime }&=y-1 \\ \end{align*}

0.354

6915

3802

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{-x} \\ \end{align*}

0.354

6916

3898

\begin{align*} x_{1}^{\prime }&=3 x_{1}+13 x_{2} \\ x_{2}^{\prime }&=-x_{1}-3 x_{2} \\ \end{align*}

0.354

6917

6456

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

0.354

6918

6536

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }&=3 y {y^{\prime }}^{2} \\ \end{align*}

0.354

6919

12853

\begin{align*} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right )&=0 \\ \end{align*}

0.354

6920

14380

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=x \\ \end{align*}

0.354

6921

16088

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

0.354

6922

16953

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

0.354

6923

18649

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=3 x-2 y \\ \end{align*}

0.354

6924

18700

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=8 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -3 \\ \end{align*}

0.354

6925

22056

\begin{align*} 3 y^{2} x^{2}+\left (2 x^{3} y+y^{4} x^{3}\right ) y^{\prime }&=0 \\ \end{align*}

0.354

6926

24761

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

0.354

6927

24814

\begin{align*} y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\ \end{align*}

0.354

6928

24889

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

0.354

6929

25122

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (t \right ) \\ \end{align*}

0.354

6930

25532

\begin{align*} y^{\prime }&=a y \\ \end{align*}

0.354

6931

25678

\begin{align*} 3 y^{\prime }&=4 y \\ \end{align*}

0.354

6932

261

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

0.355

6933

323

\begin{align*} y^{\prime \prime }-y^{\prime }+2 y&=3 x +4 \\ \end{align*}

0.355

6934

352

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.355

6935

1087

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ y \left (-3\right ) &= 1 \\ y^{\prime }\left (-3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=-3\).

0.355

6936

1418

\begin{align*} x_{1}^{\prime }&=-\frac {3 x_{1}}{2}+x_{2} \\ x_{2}^{\prime }&=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \\ \end{align*}

0.355

6937

1419

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\ x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\ \end{align*}

0.355

6938

1846

\begin{align*} \left (-x +2\right ) y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= a_{0} \\ y^{\prime }\left (0\right ) &= a_{1} \\ \end{align*}
Series expansion around \(x=0\).

0.355

6939

1923

\begin{align*} y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

0.355

6940

3719

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (2 x \right ) \\ \end{align*}

0.355

6941

3849

\begin{align*} x_{1}^{\prime }&=-x_{1}+4 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.355

6942

5825

\begin{align*} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.355

6943

8904

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

0.355

6944

8944

\begin{align*} y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

0.355

6945

9806

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2}+2 x +1 \\ \end{align*}

0.355

6946

10384

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x \\ \end{align*}

0.355

6947

14285

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.355

6948

14917

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 6 \\ \end{align*}

0.355

6949

15125

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ \end{align*}

0.355

6950

15265

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=3 x-4 y \\ \end{align*}

0.355

6951

15267

\begin{align*} x^{\prime }-x+2 y&=0 \\ y^{\prime }+y-x&=0 \\ \end{align*}

0.355

6952

15442

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

0.355

6953

16034

\begin{align*} x^{\prime }&=-3 x-y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.355

6954

17701

\begin{align*} 6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.355

6955

18660

\begin{align*} x^{\prime }&=2 x-y \\ y^{\prime }&=3 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 5 \\ \end{align*}

0.355

6956

18819

\begin{align*} y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\ \end{align*}

0.355

6957

20625

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

0.355

6958

23073

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\ \end{align*}

0.355

6959

24259

\begin{align*} \left (x +a \right ) y^{\prime }&=b x \\ \end{align*}

0.355

6960

24565

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.355

6961

24568

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.355

6962

224

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

0.356

6963

342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

0.356

6964

626

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.356

6965

844

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

0.356

6966

963

\begin{align*} x_{1}^{\prime }&=6 x_{1} \\ x_{2}^{\prime }&=-3 x_{1}-x_{2} \\ \end{align*}

0.356

6967

1074

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.356

6968

3113

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x} \\ \end{align*}

0.356

6969

3189

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\ \end{align*}

0.356

6970

4561

\begin{align*} x_{1}^{\prime }&=x_{1}-x_{2} \\ x_{2}^{\prime }&=-4 x_{1}+x_{2} \\ \end{align*}

0.356

6971

5526

\begin{align*} 4 x^{2} {y^{\prime }}^{2}-4 x y^{\prime } y&=8 x^{3}-y^{2} \\ \end{align*}

0.356

6972

8013

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

0.356

6973

8192

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\ \end{align*}

0.356

6974

9005

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.356

6975

9169

\begin{align*} y x -1+\left (x^{2}-y x \right ) y^{\prime }&=0 \\ \end{align*}

0.356

6976

9174

\begin{align*} x +3 y^{2}+2 x y^{\prime } y&=0 \\ \end{align*}

0.356

6977

10064

\begin{align*} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\ \end{align*}

0.356

6978

10771

\begin{align*} \left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

0.356

6979

10930

\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \\ \end{align*}

0.356

6980

14398

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=3 x+2 y \\ \end{align*}

0.356

6981

15010

\begin{align*} x^{\prime }&=-6 x+2 y \\ y^{\prime }&=-2 x-2 y \\ \end{align*}

0.356

6982

16622

\begin{align*} y^{\prime \prime }+9 y&=54 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

0.356

6983

16840

\begin{align*} y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=-2\).

0.356

6984

16992

\begin{align*} y^{\prime }&=\sin \left (x \right )^{3} \tan \left (x \right ) \\ \end{align*}

0.356

6985

18117

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

0.356

6986

18704

\begin{align*} x^{\prime }&=2 x-4 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

0.356

6987

20016

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

0.356

6988

20620

\begin{align*} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y&=0 \\ \end{align*}

0.356

6989

20889

\begin{align*} y^{\prime \prime }+2 x^{2} y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.356

6990

22201

\begin{align*} y^{\prime \prime }-2 y x&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}
Series expansion around \(x=1\).

0.356

6991

23758

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.356

6992

24635

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \\ \end{align*}

0.356

6993

24703

\begin{align*} y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\ \end{align*}

0.356

6994

24807

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

0.356

6995

8

\begin{align*} y^{\prime }&=\cos \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

0.357

6996

8813

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\ \end{align*}

0.357

6997

9458

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 5 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.357

6998

15151

\begin{align*} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

0.357

6999

15227

\begin{align*} -2 y+y^{\prime }&=4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.357

7000

15988

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+4 y \\ \end{align*}

0.357