| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 6901 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.353 |
|
| 6902 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6903 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6904 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6905 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6906 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6907 |
\begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6908 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| 6909 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6910 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=6 \,{\mathrm e}^{x} x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.354 |
|
| 6911 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x -\left (3 x^{2}+2\right ) y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6912 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6913 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6914 |
\begin{align*}
y^{\prime }&=y-1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6915 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6916 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}+13 x_{2} \\
x_{2}^{\prime }&=-x_{1}-3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6917 |
\begin{align*}
{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.354 |
|
| 6918 | \begin{align*}
\left (1+y^{2}\right ) y^{\prime \prime }&=3 y {y^{\prime }}^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.354 |
|
| 6919 |
\begin{align*}
y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right )&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.354 |
|
| 6920 |
\begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6921 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6922 |
\begin{align*}
x^{\prime }&=-x+2 y \\
y^{\prime }&=2 x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6923 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=3 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6924 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=8 x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6925 |
\begin{align*}
3 y^{2} x^{2}+\left (2 x^{3} y+y^{4} x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6926 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6927 |
\begin{align*}
y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.354 |
|
| 6928 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6929 |
\begin{align*}
y^{\prime \prime }+y&=2 \sin \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6930 |
\begin{align*}
y^{\prime }&=a y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6931 |
\begin{align*}
3 y^{\prime }&=4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| 6932 |
\begin{align*}
y^{\prime \prime }+2 y&=6 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6933 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+2 y&=3 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6934 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6935 |
\begin{align*}
\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\
y \left (-3\right ) &= 1 \\
y^{\prime }\left (-3\right ) &= 0 \\
\end{align*} Series expansion around \(x=-3\). |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6936 |
\begin{align*}
x_{1}^{\prime }&=-\frac {3 x_{1}}{2}+x_{2} \\
x_{2}^{\prime }&=-\frac {x_{1}}{4}-\frac {x_{2}}{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6937 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}+\frac {5 x_{2}}{2} \\
x_{2}^{\prime }&=-\frac {5 x_{1}}{2}+2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6938 | \begin{align*}
\left (-x +2\right ) y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= a_{0} \\
y^{\prime }\left (0\right ) &= a_{1} \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.355 |
|
| 6939 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6940 |
\begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6941 |
\begin{align*}
x_{1}^{\prime }&=-x_{1}+4 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6942 |
\begin{align*}
-\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.355 |
|
| 6943 |
\begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6944 |
\begin{align*}
y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6945 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2}+2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6946 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6947 |
\begin{align*}
\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6948 |
\begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6949 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.355 |
|
| 6950 |
\begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=3 x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6951 |
\begin{align*}
x^{\prime }-x+2 y&=0 \\
y^{\prime }+y-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6952 |
\begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6953 |
\begin{align*}
x^{\prime }&=-3 x-y \\
y^{\prime }&=4 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6954 |
\begin{align*}
6 y-2 y^{\prime } x +y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6955 |
\begin{align*}
x^{\prime }&=2 x-y \\
y^{\prime }&=3 x-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6956 |
\begin{align*}
y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6957 | \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.355 |
|
| 6958 |
\begin{align*}
2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6959 |
\begin{align*}
\left (x +a \right ) y^{\prime }&=b x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6960 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=10 \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6961 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| 6962 |
\begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 13 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6963 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6964 |
\begin{align*}
x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\
x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6965 |
\begin{align*}
y^{\prime \prime }+2 y&=6 x +4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6966 |
\begin{align*}
x_{1}^{\prime }&=6 x_{1} \\
x_{2}^{\prime }&=-3 x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6967 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6968 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6969 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6970 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-x_{2} \\
x_{2}^{\prime }&=-4 x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6971 |
\begin{align*}
4 x^{2} {y^{\prime }}^{2}-4 x y^{\prime } y&=8 x^{3}-y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6972 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6973 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6974 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6975 |
\begin{align*}
y x -1+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6976 | \begin{align*}
x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.356 |
|
| 6977 |
\begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6978 |
\begin{align*}
\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6979 |
\begin{align*}
x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6980 |
\begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6981 |
\begin{align*}
x^{\prime }&=-6 x+2 y \\
y^{\prime }&=-2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6982 |
\begin{align*}
y^{\prime \prime }+9 y&=54 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6983 |
\begin{align*}
y^{\prime \prime }+\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=-2\). |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6984 |
\begin{align*}
y^{\prime }&=\sin \left (x \right )^{3} \tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6985 |
\begin{align*}
y y^{\prime \prime }&={y^{\prime }}^{2}+y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6986 |
\begin{align*}
x^{\prime }&=2 x-4 y \\
y^{\prime }&=2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6987 |
\begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6988 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6989 |
\begin{align*}
y^{\prime \prime }+2 x^{2} y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6990 |
\begin{align*}
y^{\prime \prime }-2 y x&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| 6991 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6992 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6993 |
\begin{align*}
y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6994 |
\begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| 6995 | \begin{align*}
y^{\prime }&=\cos \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.357 |
|
| 6996 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| 6997 |
\begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 5 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| 6998 |
\begin{align*}
\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right )&=x^{2} \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.357 |
|
| 6999 |
\begin{align*}
-2 y+y^{\prime }&=4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| 7000 |
\begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=-x+4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.357 |
|