| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 5401 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| 5402 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| 5403 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5404 |
\begin{align*}
y^{\prime }&=\arcsin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5405 |
\begin{align*}
\left (x -y\right ) \sqrt {y^{\prime }}&=a \left (1+y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5406 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5407 |
\begin{align*}
y^{\prime }+4 y&=1 \\
y \left (0\right ) &= {\frac {5}{4}} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5408 |
\begin{align*}
2 x^{2} y^{\prime \prime }+x \left (x +5\right ) y^{\prime }-\left (2-3 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.285 |
|
| 5409 |
\begin{align*}
4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5410 |
\begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5411 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5412 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-63 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5413 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5414 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+6 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5415 |
\begin{align*}
y^{\prime \prime }-x {y^{\prime }}^{2}&=0 \\
y \left (2\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5416 |
\begin{align*}
y^{\prime }&={\mathrm e}^{2 t}-1 \\
y \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5417 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| 5418 | \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.286 |
|
| 5419 |
\begin{align*}
y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5420 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= \beta \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5421 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5422 |
\begin{align*}
y^{\prime } x +y&=y^{4} x^{4} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5423 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5424 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5425 |
\begin{align*}
4 y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5426 |
\begin{align*}
\left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5427 |
\begin{align*}
b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.286 |
|
| 5428 |
\begin{align*}
\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5429 |
\begin{align*}
2 y+\left (x^{2} y+1\right ) x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5430 |
\begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5431 |
\begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5432 |
\begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5433 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5434 |
\begin{align*}
6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5435 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5436 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (1-3 x \right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5437 |
\(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.286 |
|
| 5438 | \begin{align*}
x^{\prime \prime }&=\frac {4 x}{t^{2}} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.286 |
|
| 5439 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5440 |
\begin{align*}
x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5441 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5442 |
\begin{align*}
y^{\prime \prime }-10 y^{\prime }+34 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5443 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5444 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5445 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5446 |
\begin{align*}
\left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.286 |
|
| 5447 |
\begin{align*}
{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5448 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5449 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5450 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=2 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5451 |
\begin{align*}
\left (x^{3}-8\right ) y^{\prime \prime }-4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5452 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| 5453 |
\begin{align*}
2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| 5454 |
\begin{align*}
y^{\prime \prime }+t^{3} y^{\prime }+3 t^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5455 |
\begin{align*}
y^{\prime }&=\frac {1}{x^{{2}/{3}}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5456 |
\begin{align*}
{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5457 | \begin{align*}
-y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=3 x^{4} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.287 |
|
| 5458 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5459 |
\begin{align*}
z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5460 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5461 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5462 |
\begin{align*}
\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.287 |
|
| 5463 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.287 |
|
| 5464 |
\begin{align*}
12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.287 |
|
| 5465 |
\begin{align*}
x^{\prime }&=2 y \\
y^{\prime }&=-2 x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5466 |
\begin{align*}
4 x^{2} y^{\prime \prime }+37 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5467 |
\begin{align*}
y^{\prime }+\frac {y}{x -1}&=0 \\
\end{align*} Series expansion around \(x=3\). |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5468 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5469 |
\begin{align*}
\left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.287 |
|
| 5470 |
\begin{align*}
x^{2} y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5471 |
\begin{align*}
3 y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5472 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )+{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| 5473 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5474 |
\begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.288 |
|
| 5475 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5476 | \begin{align*}
y^{\prime \prime }+k^{2} x^{4} y&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.288 |
|
| 5477 |
\begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5478 |
\begin{align*}
2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.288 |
|
| 5479 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.288 |
|
| 5480 |
\begin{align*}
x^{\prime }&=-6 y \\
y^{\prime }&=6 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5481 |
\begin{align*}
-2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5482 |
\begin{align*}
y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5483 |
\begin{align*}
x^{\prime }+x&={\mathrm e}^{t} \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5484 |
\begin{align*}
y^{\prime }&=5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5485 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5486 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5487 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5488 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5489 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5490 |
\begin{align*}
y^{\prime \prime }-9 y&=18 x -162 x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| 5491 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5492 |
\begin{align*}
x^{\prime }&=1-\sin \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5493 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5494 |
\begin{align*}
{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5495 | \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.289 |
|
| 5496 |
\begin{align*}
y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5497 |
\begin{align*}
y+x^{3} y+2 x^{2}+\left (x +4 y^{4} x +8 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.289 |
|
| 5498 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=1+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| 5499 |
\begin{align*}
x \ln \left (x \right ) y^{\prime }+y&=3 x^{3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
✓ |
✗ |
✗ |
✓ |
0.289 |
|
| 5500 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.289 |
|