2.3.52 Problems 5101 to 5200

Table 2.635: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

5101

10910

\begin{align*} \left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y&=0 \\ \end{align*}

0.270

5102

12608

\begin{align*} y^{\prime \prime }&=-\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \\ \end{align*}

0.270

5103

14146

\begin{align*} 3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.270

5104

14821

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y&=20 \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= -2 \\ \end{align*}
Using Laplace transform method.

0.270

5105

14995

\(\left [\begin {array}{cc} 2 & -3 \\ 3 & 2 \end {array}\right ]\)

N/A

N/A

N/A

0.270

5106

16460

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{4 x} \\ \end{align*}

0.270

5107

17863

\begin{align*} y^{\prime }&=1-x \\ \end{align*}

0.270

5108

19064

\begin{align*} y^{\prime }&=-x^{3} \\ \end{align*}

0.270

5109

22635

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.270

5110

23353

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= {\mathrm e} \\ \end{align*}

0.270

5111

23438

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.270

5112

24536

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\ \end{align*}

0.270

5113

24544

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=6 x +6 \,{\mathrm e}^{-x} \\ \end{align*}

0.270

5114

1055

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}
Series expansion around \(x=0\).

0.271

5115

3193

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (\sin \left (x \right )-x^{2}\right ) \\ \end{align*}

0.271

5116

3503

\begin{align*} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.271

5117

3926

\begin{align*} x_{1}^{\prime }&=10 x_{1}-8 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ \end{align*}

0.271

5118

4130

\begin{align*} y^{\prime \prime }+y&=x^{3}+x \\ \end{align*}

0.271

5119

7981

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

0.271

5120

9357

\begin{align*} y^{\prime }-y&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

0.271

5121

10567

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 y x&=0 \\ \end{align*}

0.271

5122

12924

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right )&=0 \\ \end{align*}

0.271

5123

14871

\begin{align*} x^{\prime }&=\sin \left (t \right )+\cos \left (t \right ) \\ \end{align*}

0.271

5124

16002

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.271

5125

18859

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

0.271

5126

19459

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

0.271

5127

20488

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=\ln \left (x \right )^{2} \\ \end{align*}

0.271

5128

22298

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=6 \,{\mathrm e}^{x} \\ \end{align*}

0.271

5129

22845

\begin{align*} y^{\prime \prime }+y x&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

0.271

5130

24651

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\ \end{align*}

0.271

5131

24662

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{\frac {x}{2}}+12 \,{\mathrm e}^{x} \\ \end{align*}

0.271

5132

24696

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2}-3 \,{\mathrm e}^{-x} \\ \end{align*}

0.271

5133

24706

\begin{align*} y^{\prime \prime \prime \prime }-y&=x^{6} \\ \end{align*}

0.271

5134

25546

\begin{align*} y^{\prime \prime }+y&=\delta \left (t \right ) \\ \end{align*}

0.271

5135

25817

\begin{align*} 1+{\mathrm e}^{3 x} y^{\prime }&=0 \\ \end{align*}

0.271

5136

4069

\begin{align*} \left (4 x^{2}+1\right ) y^{\prime \prime }-8 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.272

5137

4166

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2} \\ y_{2}^{\prime }&=3 y_{2}-y_{1} \\ \end{align*}

0.272

5138

8965

\begin{align*} y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.272

5139

10302

\begin{align*} x \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

0.272

5140

10380

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

0.272

5141

10669

\begin{align*} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}

0.272

5142

10703

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.272

5143

14583

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&=0 \\ \end{align*}

0.272

5144

17596

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=-\frac {1}{t^{2}}-\frac {2}{t} \\ \end{align*}

0.272

5145

20421

\begin{align*} y&=y^{\prime } \left (-b +x \right )+\frac {a}{y^{\prime }} \\ \end{align*}

0.272

5146

20512

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \ln \left (x \right ) \\ \end{align*}

0.272

5147

22617

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

0.272

5148

23706

\begin{align*} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

0.272

5149

23848

\begin{align*} y^{\prime \prime }+y&=2 x -1 \\ \end{align*}

0.272

5150

24613

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

0.272

5151

24643

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

0.272

5152

25244

\begin{align*} -t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\ \end{align*}
Using Laplace transform method.

0.272

5153

1377

\begin{align*} y^{\prime \prime }-y^{\prime } x -y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.273

5154

1765

\begin{align*} x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

0.273

5155

4129

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\ \end{align*}

0.273

5156

6550

\begin{align*} x y^{2} y^{\prime \prime }&=a \\ \end{align*}

0.273

5157

6871

\begin{align*} u^{\prime }+b u^{2}&=\frac {c}{x^{4}} \\ \end{align*}

0.273

5158

7755

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=8 \\ \end{align*}

0.273

5159

7804

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=\frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \\ \end{align*}

0.273

5160

8568

\begin{align*} y^{\prime } x -3 y&=k \\ \end{align*}
Series expansion around \(x=0\).

0.273

5161

8895

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.273

5162

10263

\begin{align*} y^{\prime }&=a x \\ \end{align*}

0.273

5163

10460

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=-x+y \\ \end{align*}

0.273

5164

10470

\begin{align*} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\ \end{align*}

0.273

5165

10533

\begin{align*} x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y&=0 \\ \end{align*}

0.273

5166

10568

\begin{align*} 2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y&=0 \\ \end{align*}

0.273

5167

10657

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.273

5168

10708

\begin{align*} x^{2} y^{\prime \prime }+2 x \left (2+x \right ) y^{\prime }+2 \left (x +1\right ) y&=0 \\ \end{align*}

0.273

5169

11142

\begin{align*} x^{4} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

0.273

5170

11180

\begin{align*} \left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

0.273

5171

13192

\(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\)

N/A

N/A

N/A

0.273

5172

14376

\begin{align*} x^{\prime }&=-3 x \\ y^{\prime }&=2 y \\ \end{align*}

0.273

5173

14993

\(\left [\begin {array}{cc} 9 & 2 \\ 2 & 6 \end {array}\right ]\)

N/A

N/A

N/A

0.273

5174

16864

\begin{align*} y^{\prime }-{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.273

5175

17585

\begin{align*} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y&=2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \\ \end{align*}

0.273

5176

18923

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.273

5177

19022

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{2}-\frac {x_{2}}{4} \\ x_{2}^{\prime }&=x_{1}-\frac {x_{2}}{2} \\ \end{align*}

0.273

5178

21283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+3 x&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.273

5179

24579

\begin{align*} y^{\prime \prime }+9 y&=4 \cos \left (x \right ) \\ \end{align*}

0.273

5180

24707

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

0.273

5181

25651

\begin{align*} u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\ \end{align*}

0.273

5182

445

\begin{align*} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\ y \left (3\right ) &= 2 \\ y^{\prime }\left (3\right ) &= 0 \\ \end{align*}
Series expansion around \(x=3\).

0.274

5183

2417

\begin{align*} y^{\prime \prime }+t^{2} y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Series expansion around \(t=0\).

0.274

5184

3801

\begin{align*} y^{\prime \prime }-4 y&=5 \,{\mathrm e}^{x} \\ \end{align*}

0.274

5185

3855

\begin{align*} x_{1}^{\prime }&=-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+4 x_{2} \\ \end{align*}

0.274

5186

5931

\begin{align*} 4 x \left (x^{2}+1\right ) y+\left (4 x^{2}+1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

0.274

5187

8338

\begin{align*} y^{\prime }&=\sin \left (5 x \right ) \\ \end{align*}

0.274

5188

10675

\begin{align*} 4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y&=0 \\ \end{align*}

0.274

5189

10984

\begin{align*} 2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y&=0 \\ \end{align*}

0.274

5190

14101

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

0.274

5191

14396

\begin{align*} x^{\prime }&=-3 x+y \\ y^{\prime }&=-3 y \\ \end{align*}

0.274

5192

16003

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= -2 \\ \end{align*}

0.274

5193

17992

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2}&=0 \\ \end{align*}

0.274

5194

18815

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} \\ \end{align*}

0.274

5195

20045

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\ \end{align*}

0.274

5196

22108

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.274

5197

23507

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&={\mathrm e}^{2 x} \left (x +3\right ) \\ \end{align*}

0.274

5198

23767

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x \\ \end{align*}

0.274

5199

24690

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

0.274

5200

24695

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

0.274