| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 4401 |
\begin{align*}
x^{2} y^{\prime \prime \prime \prime }+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| 4402 |
\begin{align*}
y^{\prime \prime }+y x&=2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.240 |
|
| 4403 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4404 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4405 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+7 y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4406 |
\begin{align*}
2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4407 |
\begin{align*}
y^{\prime \prime \prime }+2 y^{\prime }&=x^{2}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4408 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+2 y&=8 x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 4409 |
\begin{align*}
r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4410 |
\begin{align*}
3 y^{\prime \prime }+11 y^{\prime }-7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4411 |
\begin{align*}
y^{\prime }-2 \tan \left (x \right ) y&=y^{2} \tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4412 |
\begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4413 |
\begin{align*}
9 x^{2} y^{\prime \prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4414 |
\begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 4415 |
\begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 4416 |
\begin{align*}
y^{\prime \prime }&=\left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 \left (x -1\right ) x}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4417 |
\begin{align*}
y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+y \sin \left (x \right )-\ln \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 4418 | \(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\) | ✓ | N/A | N/A | N/A | 0.241 |
|
| 4419 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4420 |
\begin{align*}
y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4421 |
\begin{align*}
{y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4422 |
\begin{align*}
y^{\prime \prime \prime } \csc \left (x \right )^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4423 |
\begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \left (2+y^{\prime } x -4 y^{2} y^{\prime }\right ) \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.241 |
|
| 4424 |
\begin{align*}
y^{\prime }&=2 x -y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4425 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4426 |
\begin{align*}
y^{\prime \prime } x +\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\
y \left (1\right ) &= 2 \,{\mathrm e} \\
y^{\prime }\left (1\right ) &= -3 \,{\mathrm e} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.241 |
|
| 4427 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=20 \,{\mathrm e}^{-4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4428 |
\begin{align*}
4 y+y^{\prime \prime }&=8 x^{5} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4429 |
\begin{align*}
2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4430 |
\begin{align*}
t y^{\prime \prime }-2 y^{\prime }+t y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4431 |
\begin{align*}
4 y^{\prime \prime }+B y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| 4432 |
\begin{align*}
6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| 4433 |
\begin{align*}
{y^{\prime }}^{3}-2 y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.242 |
|
| 4434 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| 4435 |
\begin{align*}
9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| 4436 |
\(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.242 |
|
| 4437 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4438 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+17 y&=17 t -1 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4439 | \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.242 |
|
| 4440 |
\begin{align*}
\left (y-3\right ) y^{\prime \prime }&=2 {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.242 |
|
| 4441 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4442 |
\begin{align*}
y^{2}-2 x y^{\prime } y+{y^{\prime }}^{2} \left (x^{2}-1\right )&=m^{2} \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.242 |
|
| 4443 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x}+y \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4444 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=72 x \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4445 |
\begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| 4446 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4447 |
\begin{align*}
\left (x -2\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4448 |
\begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4449 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4450 |
\begin{align*}
y^{\prime \prime }&=a +b x +c y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.243 |
|
| 4451 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4452 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4453 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4454 |
\begin{align*}
{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4455 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4456 |
\begin{align*}
y^{\prime }&=1+y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4457 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.243 |
|
| 4458 |
\begin{align*}
t y^{\prime }+y&=0 \\
y \left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4459 | \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.243 |
|
| 4460 |
\begin{align*}
6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.243 |
|
| 4461 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4462 |
\begin{align*}
y^{\prime \prime } x +3 y^{\prime }+4 x^{3} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4463 |
\begin{align*}
16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4464 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4465 |
\(\left [\begin {array}{cc} 1 & 2 \\ 3 & 2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.243 |
|
| 4466 |
\begin{align*}
x^{\prime }&=-2 x-y \\
y^{\prime }&=x-4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4467 |
\begin{align*}
y^{\prime }&=\frac {\sqrt {x^{2}-16}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4468 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4469 |
\begin{align*}
\left (1+{y^{\prime }}^{2}\right ) x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4470 |
\begin{align*}
x^{\prime \prime }-x^{\prime }-6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4471 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4472 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4473 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| 4474 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4475 |
\begin{align*}
\left (2 x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4476 |
\begin{align*}
a x y^{\prime }+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.244 |
|
| 4477 |
\begin{align*}
y^{\prime } x&=y x +y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4478 |
\begin{align*}
y^{\prime \prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4479 | \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). | ✓ | ✓ | ✓ | ✓ | 0.244 |
|
| 4480 |
\begin{align*}
y^{\prime }-\left (y-1\right )^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4481 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4}&=9 t^{3}+64 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {63}{2}} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4482 |
\begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4483 |
\begin{align*}
5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4484 |
\begin{align*}
\left (x +1\right ) y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4485 |
\begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4486 |
\begin{align*}
\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4487 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4488 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4489 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4490 |
\begin{align*}
x^{4} y^{\prime \prime }+\lambda y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4491 |
\begin{align*}
4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.244 |
|
| 4492 |
\(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.244 |
|
| 4493 |
\(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.244 |
|
| 4494 |
\(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.244 |
|
| 4495 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4496 |
\begin{align*}
x^{\prime }&=-3 x \\
y^{\prime }&=x-3 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4497 |
\begin{align*}
x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4498 |
\begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4499 |
\begin{align*}
y^{\prime \prime }-3 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| 4500 | \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.244 |
|