| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 4201 |
\begin{align*}
y^{\prime \prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4202 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (2+x \right ) y&={\mathrm e}^{x} x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.231 |
|
| 4203 |
\begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4204 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4205 |
\begin{align*}
3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4206 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=21 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4207 |
\begin{align*}
4 y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| 4208 |
\begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4209 |
\begin{align*}
\left (-x^{3}+1\right ) y^{\prime }-2 \left (x +1\right ) y&=y^{{5}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4210 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.232 |
|
| 4211 |
\begin{align*}
y^{\prime \prime }+\frac {y}{2 x^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4212 |
\begin{align*}
y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.232 |
|
| 4213 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 y^{\prime } x -5 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
y^{\prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4214 |
\begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4215 |
\begin{align*}
x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.232 |
|
| 4216 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4217 |
\begin{align*}
x^{\prime }&=-x \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4218 | \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=-6 x^{2}-8 x +4 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.232 |
|
| 4219 |
\begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| 4220 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\left \{\begin {array}{cc} {\mathrm e}^{t} & 0\le t <1 \\ {\mathrm e}^{2 t} & 1\le t <\infty \end {array}\right . \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✓ |
0.232 |
|
| 4221 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4222 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4223 |
\begin{align*}
y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4224 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=-6 x -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4225 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=-2 x -2+4 \,{\mathrm e}^{x}-6 \,{\mathrm e}^{-x}+96 \,{\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4226 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+9 y^{\prime \prime }+7 y^{\prime }+2 y&={\mathrm e}^{-x} \left (30+24 x \right )-{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4227 |
\begin{align*}
y^{\prime \prime }+y&=t^{2} \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4228 |
\begin{align*}
y^{2}-2 x +2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4229 |
\begin{align*}
-\left (1-x \right ) y+\left (1-2 x \right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4230 |
\begin{align*}
y x -x^{2} y^{\prime }+2 x^{3} y^{\prime \prime }+x^{4} y^{\prime \prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4231 |
\begin{align*}
4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4232 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4233 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4234 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4235 |
\begin{align*}
y^{\prime }+y&=\frac {1}{x^{2}} \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.233 |
|
| 4236 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (-x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4237 | \begin{align*}
x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.233 |
|
| 4238 |
\begin{align*}
\left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (-x +2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4239 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4240 |
\begin{align*}
4 y^{\prime \prime }+5 y^{\prime }+4 y&=3 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4241 |
\begin{align*}
y^{\prime } x +\sqrt {x}&=2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4242 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 y^{\prime } x +58 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 10 \\
y^{\prime \prime }\left (1\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4243 |
\begin{align*}
x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y&=x^{2} \left (2 x -3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.233 |
|
| 4244 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4245 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4246 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=1 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 4 \\
y^{\prime \prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4247 |
\begin{align*}
y^{\left (5\right )}-y^{\prime \prime \prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4248 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4249 |
\begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4250 |
\begin{align*}
y^{\prime } y&=-x {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4251 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4252 |
\begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4253 |
\begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4254 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| 4255 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4256 | \begin{align*}
x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
x^{\prime \prime \prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.234 |
|
| 4257 |
\begin{align*}
y^{\prime }&=4 y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4258 |
\begin{align*}
\left (1-x \right ) y^{\prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4259 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4260 |
\begin{align*}
4 \left (-x +2\right ) {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4261 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4262 |
\begin{align*}
\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4263 |
\begin{align*}
{y^{\prime }}^{3}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+x y^{2} \left (y^{4}+x y^{2}+x^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4264 |
\begin{align*}
a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4265 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4266 |
\begin{align*}
y^{\prime \prime }+9 y&=10 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4267 |
\begin{align*}
y^{\prime }&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4268 |
\begin{align*}
y^{\prime }+\left (a t +b t \right ) y&=0 \\
y \left (-3\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4269 |
\begin{align*}
y^{\prime } x +y&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4270 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4271 |
\begin{align*}
x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4272 |
\(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\) |
✓ |
N/A |
N/A |
N/A |
0.234 |
|
| 4273 |
\begin{align*}
y^{\prime } y&=\left (-b +x \right ) {y^{\prime }}^{2}+a \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4274 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4275 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4276 | \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.234 |
|
| 4277 |
\begin{align*}
{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4278 |
\begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4279 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4280 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=27 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4281 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4282 |
\begin{align*}
x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.234 |
|
| 4283 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| 4284 |
\begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4285 |
\begin{align*}
{y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4286 |
\begin{align*}
2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4287 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4288 |
\begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4289 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.235 |
|
| 4290 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.235 |
|
| 4291 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4292 |
\begin{align*}
x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.235 |
|
| 4293 |
\begin{align*}
y^{\prime \prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4294 |
\begin{align*}
y^{\prime } x&=-\frac {1}{\ln \left (x \right )} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4295 | \begin{align*}
y^{\prime \prime }+y&=\delta \left (t -2 \pi \right ) \cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.235 |
|
| 4296 |
\begin{align*}
y^{\prime \prime }+y&=\delta \left (-1+t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4297 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime } x -y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.235 |
|
| 4298 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=-x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4299 |
\begin{align*}
4 y^{\prime \prime }+y&={\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| 4300 |
\begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.236 |
|