| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3901 |
\begin{align*}
t^{2} y+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3902 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.218 |
|
| 3903 |
\begin{align*}
16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.218 |
|
| 3904 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.218 |
|
| 3905 |
\begin{align*}
y^{\prime \prime } x +a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.218 |
|
| 3906 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3907 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3908 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3909 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3910 |
\begin{align*}
y^{\prime }+\cos \left (y\right )&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3911 |
\begin{align*}
12 y^{\prime \prime }+8 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3912 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=g \left (t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3913 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3914 |
\begin{align*}
x^{2} y^{\prime \prime }+4 y^{2}-6 y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.218 |
|
| 3915 |
\begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3916 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3917 |
\begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| 3918 | \begin{align*}
y^{\prime \prime }-y&=x^{3} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.218 |
|
| 3919 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3920 |
\begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{-2 x} \left (\left (23-2 x \right ) \cos \left (x \right )+\left (8-9 x \right ) \sin \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3921 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=\frac {2 \,{\mathrm e}^{x}}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3922 |
\begin{align*}
a \,x^{2} y+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3923 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=21 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= {\frac {7}{2}} \\
y^{\prime }\left (0\right ) &= -10 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3924 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.219 |
|
| 3925 |
\begin{align*}
3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.219 |
|
| 3926 |
\begin{align*}
4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.219 |
|
| 3927 |
\begin{align*}
y^{\prime \prime }-a \,x^{n} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.219 |
|
| 3928 |
\begin{align*}
y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime }&=3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3929 |
\begin{align*}
3 y^{\prime \prime }+7 y^{\prime }-6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3930 |
\begin{align*}
8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3931 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&=12 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3932 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3933 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3934 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime }&=x^{3}+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3935 |
\begin{align*}
\frac {1}{x}+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3936 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| 3937 | \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.219 |
|
| 3938 |
\begin{align*}
y^{\prime \prime }&=y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3939 |
\begin{align*}
y^{\prime }&=-x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3940 |
\begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3941 |
\begin{align*}
y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (-5 x^{2}-8 x +3\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3942 |
\begin{align*}
y^{2} {y^{\prime }}^{2}+2 x y^{\prime } y+a -y^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3943 |
\begin{align*}
2 y y^{\prime \prime }&=-1+2 x f \left (x \right ) y^{2}-y^{4}-4 y^{2} y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.220 |
|
| 3944 |
\begin{align*}
6 n y^{\prime }-2 \left (n +1\right ) x y^{\prime \prime }+x^{2} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3945 |
\begin{align*}
n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3946 |
\begin{align*}
\left (1-x \right ) y^{\prime }&=x^{2}-y \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3947 |
\begin{align*}
-y+y^{\prime }&=t \,{\mathrm e}^{t} \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3948 |
\begin{align*}
10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3949 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3950 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (6 x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3951 |
\begin{align*}
y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3952 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3953 |
\begin{align*}
y^{\prime \prime }&=\left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.220 |
|
| 3954 |
\begin{align*}
\left (4 x +3\right ) y+16 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3955 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y&=8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3956 |
\begin{align*}
15 y^{\prime \prime }-11 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3957 | \begin{align*}
y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.220 |
|
| 3958 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime }&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3959 |
\begin{align*}
3 y^{2} x^{2}+\left (2 x^{3} y+4 y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3960 |
\begin{align*}
z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| 3961 |
\begin{align*}
2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3962 |
\begin{align*}
x^{\prime \prime }+6 x^{\prime }+18 x&=\cos \left (2 t \right ) \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3963 |
\begin{align*}
y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+15 y&={\mathrm e}^{2 x} \left (15 x \cos \left (2 x \right )+32 \sin \left (2 x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3964 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3965 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3966 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3967 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3968 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.221 |
|
| 3969 |
\begin{align*}
y^{\prime }&=x \sqrt {1-y^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3970 |
\begin{align*}
y+\left (x -2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.221 |
|
| 3971 |
\begin{align*}
2 x^{2} \left (2+x \right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.221 |
|
| 3972 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.221 |
|
| 3973 |
\begin{align*}
{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3974 |
\begin{align*}
y^{\prime \prime }&=-\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3975 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3976 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.221 |
|
| 3977 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3978 |
\begin{align*}
{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+y x +y^{2}\right )+x y \left (x +y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3979 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y&={\mathrm e}^{x}+\cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3980 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3981 |
\begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3982 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=50 \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3983 |
\begin{align*}
2 t y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| 3984 |
\begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=4 x^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3985 |
\begin{align*}
-y+y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3986 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (6 x +4\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.222 |
|
| 3987 |
\begin{align*}
x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.222 |
|
| 3988 |
\begin{align*}
2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.222 |
|
| 3989 |
\begin{align*}
y^{\prime \prime }&=\left (\frac {6}{x^{2}}-1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3990 |
\begin{align*}
x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-f \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.222 |
|
| 3991 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3992 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3993 |
\begin{align*}
1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3994 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| 3995 | \begin{align*}
y^{\prime }&=y x \\
y \left (0\right ) &= 5 \\
\end{align*} Series expansion around \(x=0\). | ✓ | ✓ | ✓ | ✓ | 0.222 |
|
| 3996 |
\begin{align*}
\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| 3997 |
\begin{align*}
x^{\prime \prime \prime \prime }-x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
x^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| 3998 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| 3999 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| 4000 |
\begin{align*}
{y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.223 |
|