| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 3201 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.184 |
|
| 3202 |
\begin{align*}
w^{\prime }+y&=\sin \left (t \right ) \\
y^{\prime }-z&={\mathrm e}^{t} \\
w+y+z^{\prime }&=1 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
z \left (0\right ) &= 1 \\
w \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.184 |
|
| 3203 |
\begin{align*}
y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime }&=x^{2}-x +{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| 3204 |
\begin{align*}
x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| 3205 |
\begin{align*}
t y^{\prime \prime }-4 y^{\prime }+t y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.184 |
|
| 3206 |
\begin{align*}
x y^{\prime \prime \prime }-y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3207 |
\begin{align*}
6 y^{\prime \prime }+6 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3208 |
\begin{align*}
6 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3209 |
\begin{align*}
u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3210 |
\begin{align*}
{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3211 |
\begin{align*}
16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.185 |
|
| 3212 |
\begin{align*}
t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3213 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x +3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.185 |
|
| 3214 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.185 |
|
| 3215 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 y x +x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3216 |
\begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3217 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y&=\sin \left (2 x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3218 | \begin{align*}
4 y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.185 |
|
| 3219 |
\begin{align*}
x y^{\prime \prime } \left (\cos \left (x \right ) x -2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right )&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.185 |
|
| 3220 |
\begin{align*}
35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3221 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3222 |
\begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| 3223 |
\begin{align*}
35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3224 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3225 |
\begin{align*}
x^{\prime \prime }+x&=\cos \left (3 t \right ) \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3226 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3227 |
\begin{align*}
{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3228 |
\begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3229 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3230 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3231 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3232 |
\begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3233 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3234 |
\begin{align*}
-y+y^{\prime }&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3235 |
\begin{align*}
y^{\prime } \left (y^{\prime }-y\right )&=x \left (x +y\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3236 |
\begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3237 | \begin{align*}
x^{\prime }+y&=4 \\
x-y^{\prime }&=3 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.186 |
|
| 3238 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=\cosh \left (2 x \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.186 |
|
| 3239 |
\begin{align*}
y^{2} {y^{\prime }}^{2}-x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3240 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| 3241 |
\begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime \prime }+4 y&={\mathrm e}^{x}-x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3242 |
\begin{align*}
y^{\prime }&=y x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3243 |
\begin{align*}
2 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3244 |
\begin{align*}
x^{\prime }-x-2 y&=16 \,{\mathrm e}^{t} t \\
2 x-y^{\prime }-2 y&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 4 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3245 |
\begin{align*}
\left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.187 |
|
| 3246 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-3 y^{\prime \prime } x +3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3247 |
\begin{align*}
y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3248 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.187 |
|
| 3249 |
\begin{align*}
2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.187 |
|
| 3250 |
\begin{align*}
x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.187 |
|
| 3251 |
\begin{align*}
2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.187 |
|
| 3252 |
\begin{align*}
y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 5 \\
y^{\prime \prime }\left (0\right ) &= -20 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3253 |
\begin{align*}
1&=x^{2}-9 y^{\prime } \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3254 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3255 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3256 |
\begin{align*}
t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }&=\frac {45}{8 t^{{7}/{2}}} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
y^{\prime \prime }\left (1\right ) &= 1 \\
y^{\prime \prime \prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3257 | \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.187 |
|
| 3258 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3259 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y&=4 \sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3260 |
\begin{align*}
3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| 3261 |
\begin{align*}
x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
x^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3262 |
\begin{align*}
y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }-7 y^{\prime }+6 y&=-3 \,{\mathrm e}^{-x} \left (-8 x^{2}+8 x +12\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3263 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3264 |
\begin{align*}
y^{\prime \prime }+y&=t \sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3265 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3266 |
\begin{align*}
4 x^{2} y^{\prime \prime }+y&=\sqrt {x}\, \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3267 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3268 |
\begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3269 |
\begin{align*}
2 y y^{\prime \prime }&=-a^{2}-4 \left (-x^{2}+b \right ) y^{2}+8 x y^{3}+3 y^{4}+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.188 |
|
| 3270 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3271 |
\begin{align*}
y \,{\mathrm e}^{y x}+2 x +\left (x \,{\mathrm e}^{y x}-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.188 |
|
| 3272 |
\begin{align*}
y^{\prime \prime }-2 i y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3273 |
\begin{align*}
-2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3274 |
\begin{align*}
2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.188 |
|
| 3275 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3276 |
\begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.188 |
|
| 3277 | \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.188 |
|
| 3278 |
\begin{align*}
y^{\prime \prime }+\frac {y}{x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3279 |
\begin{align*}
x^{\prime }+x&=\sin \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3280 |
\begin{align*}
2 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3281 |
\begin{align*}
t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&={\mathrm e}^{2 t} t^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.188 |
|
| 3282 |
\begin{align*}
y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+16 y^{\prime \prime }&=96 \,{\mathrm e}^{-4 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3283 |
\begin{align*}
y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime }&={\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3284 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3285 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=13 t +17+40 \sin \left (t \right ) \\
y \left (0\right ) &= 30 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3286 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3287 |
\begin{align*}
y^{\prime \prime }&=2 a y^{\prime }-\left (a^{2}-\omega ^{2}\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| 3288 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-10 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| 3289 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+8 y^{\prime \prime }+8 y^{\prime }+4 y&=-2 \,{\mathrm e}^{x} \left (-\sin \left (x \right )+\cos \left (x \right )\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| 3290 |
\begin{align*}
3 x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| 3291 |
\begin{align*}
y_{1}^{\prime }&=y_{2}-y_{3} \\
y_{2}^{\prime }&=y_{1}+y_{3}-{\mathrm e}^{-t} \\
y_{3}^{\prime }&=y_{1}+y_{2}+{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 2 \\
y_{3} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| 3292 |
\begin{align*}
y^{\prime \prime }-y x&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| 3293 |
\begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| 3294 |
\begin{align*}
y^{\prime }+\frac {y}{\sqrt {t}}&={\mathrm e}^{\frac {\sqrt {t}}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| 3295 |
\begin{align*}
6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| 3296 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.190 |
|
| 3297 |
\begin{align*}
2 {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.190 |
|
| 3298 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.190 |
|
| 3299 |
\begin{align*}
4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.190 |
|
| 3300 |
\begin{align*}
\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.190 |
|