| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 2801 |
\begin{align*}
{y^{\prime }}^{2}&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2802 |
\begin{align*}
y^{\prime }-2 y x&=6 x \,{\mathrm e}^{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2803 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2804 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2805 |
\begin{align*}
6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2806 |
\begin{align*}
3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2807 |
\begin{align*}
x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2808 |
\begin{align*}
x \left (x -1\right )^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2809 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2810 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2811 |
\begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2812 |
\begin{align*}
2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2813 |
\begin{align*}
y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2814 |
\begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2815 |
\begin{align*}
4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2816 |
\begin{align*}
3 y^{\prime \prime } x -2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| 2817 |
\begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&={\mathrm e}^{-t} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2818 | \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=t +2 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.168 |
|
| 2819 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2820 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=3 \,{\mathrm e}^{x} \cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2821 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=t^{2} {\mathrm e}^{4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2822 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 y^{\prime } x +125 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2823 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2824 |
\begin{align*}
x_{1}^{\prime }&=x_{2}-x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2825 |
\begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2826 |
\begin{align*}
y^{\prime }&=x^{3}+y^{3} \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2827 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| 2828 |
\begin{align*}
14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2829 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{2 x} \left (-3 x^{2}-4 x +5\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2830 |
\begin{align*}
y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }-4 y&={\mathrm e}^{4 x} \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2831 |
\begin{align*}
x y^{\prime } y-y x&=y \\
y \left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2832 |
\begin{align*}
y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.169 |
|
| 2833 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2834 |
\begin{align*}
y_{1}^{\prime }&=-5 y_{1}+y_{2} \\
y_{2}^{\prime }&=-9 y_{1}+5 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2835 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2836 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&=9 x^{2}-2 x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2837 |
\begin{align*}
x {y^{\prime }}^{2}+\left (y-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2838 | \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.169 |
|
| 2839 |
\begin{align*}
{y^{\prime }}^{2}&=4 x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| 2840 |
\begin{align*}
7 y^{\prime } x -2 y&=-\frac {x^{2}}{y^{6}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| 2841 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=-{\mathrm e}^{x} \left (-24 x^{2}+76 x +4\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2842 |
\begin{align*}
x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2843 |
\begin{align*}
y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2844 |
\begin{align*}
2 y-3 x +y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2845 |
\begin{align*}
y^{\prime \prime }-y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2846 |
\begin{align*}
y^{\prime }+6 y&={\mathrm e}^{4 t} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2847 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2848 |
\begin{align*}
4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| 2849 |
\begin{align*}
x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| 2850 |
\begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| 2851 |
\begin{align*}
y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r}&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.170 |
|
| 2852 |
\begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.170 |
|
| 2853 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
y^{\prime \prime }\left (0\right ) &= 8 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2854 |
\begin{align*}
y&=y^{\prime } y+y^{\prime }-{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2855 |
\begin{align*}
y^{\prime \prime \prime }&=f \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2856 |
\begin{align*}
{y^{\prime }}^{2}-9 y^{\prime }+18&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2857 |
\begin{align*}
x y^{2}+\left (y^{2} x^{2}+x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2858 | \begin{align*}
y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (1+\sin \left (x \right )\right ) y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.170 |
|
| 2859 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2860 |
\begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2861 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| 2862 |
\begin{align*}
t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x&=0 \\
x \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2863 |
\begin{align*}
y^{\prime }&=x \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2864 |
\begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y&=x \,{\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2865 |
\begin{align*}
y^{\prime }&=y^{2} x^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2866 |
\begin{align*}
y^{\prime }+\frac {m}{x}&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2867 |
\begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2868 |
\begin{align*}
2 y y^{\prime \prime }&=-1-2 x y^{2}+a y^{3}+{y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.171 |
|
| 2869 |
\begin{align*}
2 y y^{\prime \prime }&=f \left (x \right ) y^{2}+3 {y^{\prime }}^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.171 |
|
| 2870 |
\begin{align*}
x -2 y x +{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2871 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2872 |
\begin{align*}
-y+y^{\prime }&=1 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2873 |
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2874 |
\begin{align*}
28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2875 |
\begin{align*}
x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (-3 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2876 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2877 |
\begin{align*}
2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2878 | \begin{align*}
t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.171 |
|
| 2879 |
\begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2880 |
\begin{align*}
y+y^{\prime }&=2 \sin \left (t \right ) \\
y \left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2881 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2882 |
\begin{align*}
t y^{\prime \prime }+y^{\prime }+t y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2883 |
\begin{align*}
y^{\prime \prime }+9 y&=27 t^{3} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2884 |
\begin{align*}
x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.171 |
|
| 2885 |
\begin{align*}
9 y^{\prime \prime }+18 y^{\prime }-16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2886 |
\begin{align*}
{y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2887 |
\begin{align*}
x^{\prime \prime \prime \prime }+x^{\prime \prime \prime }&=t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2888 |
\begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2889 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2890 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=3 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2891 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2892 |
\begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2893 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=16 \,{\mathrm e}^{2 x} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| 2894 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{-t} \\
y \left (t_{0} \right ) &= 1 \\
y^{\prime }\left (t_{0} \right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| 2895 |
\begin{align*}
y^{\prime }-\tan \left (x \right ) y+y^{2} \cos \left (x \right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| 2896 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| 2897 | \begin{align*}
5 y^{\prime \prime \prime }+x y^{\prime \prime \prime \prime }&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.172 |
|
| 2898 |
\begin{align*}
\theta r^{\prime }+3 r-\theta -1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| 2899 |
\begin{align*}
-y+y^{\prime }&=1+{\mathrm e}^{t} t \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| 2900 |
\begin{align*}
2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.172 |
|