| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 1701 |
\begin{align*}
x +y+1+\left (2 x +2 y+2\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1702 |
\begin{align*}
2 y x +3+\left (x^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1703 |
\begin{align*}
x^{3} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.105 |
|
| 1704 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1705 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1706 |
\begin{align*}
3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1707 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= -3 \\
y^{\prime \prime \prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1708 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1709 |
\begin{align*}
-8 y+7 y^{\prime } x -3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1710 |
\begin{align*}
y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=12 \,{\mathrm e}^{-2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1711 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1712 |
\begin{align*}
y^{\prime \prime \prime \prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1713 |
\begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1714 |
\begin{align*}
y^{\prime \prime \prime \prime }-\lambda ^{4} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime \prime }\left (\pi \right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1715 |
\begin{align*}
6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1716 |
\begin{align*}
y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1717 |
\begin{align*}
y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+7 y^{\prime \prime }+6 y^{\prime }-8 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1718 | \begin{align*}
x^{4} y^{\prime \prime \prime }+1&=0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.105 |
|
| 1719 |
\begin{align*}
x^{3} y^{\prime \prime }+\left (5 x^{3}-x^{2}\right ) y^{\prime }+2 \left (3 x^{3}-x^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.105 |
|
| 1720 |
\begin{align*}
y^{\prime \prime \prime }-12 y^{\prime \prime }+48 y^{\prime }-64 y&=15 \,{\mathrm e}^{4 x} x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1721 |
\begin{align*}
y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1722 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| 1723 |
\begin{align*}
y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.106 |
|
| 1724 |
\begin{align*}
y^{\prime }-2 t y&=t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1725 |
\begin{align*}
y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.106 |
|
| 1726 |
\begin{align*}
1+y \cos \left (x \right )-\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1727 |
\begin{align*}
\left (b x +a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1728 |
\begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.106 |
|
| 1729 |
\begin{align*}
9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.106 |
|
| 1730 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1731 |
\begin{align*}
-2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1732 |
\begin{align*}
x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x&=t^{2}-3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1733 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1734 |
\begin{align*}
\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.106 |
|
| 1735 |
\begin{align*}
y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 3 \\
y^{\prime \prime }\left (0\right ) &= -7 \\
y^{\prime \prime \prime }\left (0\right ) &= 15 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1736 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime \prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1737 | \begin{align*}
y^{\prime \prime \prime \prime }-y^{\prime }&=2 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.106 |
|
| 1738 |
\begin{align*}
x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.106 |
|
| 1739 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1740 |
\begin{align*}
y^{\prime \prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1741 |
\begin{align*}
y^{\prime \prime }-y&=6 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1742 |
\begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=2 \,{\mathrm e}^{-5 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1743 |
\begin{align*}
x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.106 |
|
| 1744 |
\begin{align*}
t^{2} y^{\prime \prime }-2 t y^{\prime }+\left (t^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1745 |
\begin{align*}
t^{2} y^{\prime \prime }+5 t y^{\prime }+4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.106 |
|
| 1746 |
\begin{align*}
y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1747 |
\begin{align*}
y^{\prime \prime \prime }&=\cos \left (x \right )+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1748 |
\begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.107 |
|
| 1749 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1750 |
\begin{align*}
t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1751 |
\begin{align*}
y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1752 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime }&=x^{2}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1753 |
\begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.107 |
|
| 1754 |
\begin{align*}
y^{\prime \prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1755 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.107 |
|
| 1756 | \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.107 |
|
| 1757 |
\begin{align*}
y^{\prime \prime \prime }-5 y^{\prime \prime }+100 y^{\prime }-500 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
y^{\prime \prime }\left (0\right ) &= 250 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1758 |
\begin{align*}
y^{\prime \prime } x -\left (4 x +1\right ) y^{\prime }+\left (2+4 x \right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.108 |
|
| 1759 |
\begin{align*}
\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.108 |
|
| 1760 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-7 y^{\prime \prime }-y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= -6 \\
y^{\prime \prime }\left (0\right ) &= 10 \\
y^{\prime \prime \prime }\left (0\right ) &= -36 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1761 |
\begin{align*}
y^{\prime }&=\sqrt {1-y} \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1762 |
\begin{align*}
y^{\prime \prime \prime }&=6 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
y^{\prime \prime }\left (0\right ) &= -4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1763 |
\begin{align*}
y+3 x^{2}+y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1764 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1765 |
\begin{align*}
-8 y+3 y^{\prime } x +x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1766 |
\begin{align*}
y^{\prime \prime \prime \prime }&=\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1767 |
\begin{align*}
y-2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=4+{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1768 |
\begin{align*}
x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.108 |
|
| 1769 |
\begin{align*}
4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.108 |
|
| 1770 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1771 |
\begin{align*}
y^{\prime \prime } x +2 y^{\prime }+4 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1772 |
\begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1773 |
\begin{align*}
x^{\prime \prime }-t x^{\prime }+x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.108 |
|
| 1774 |
\begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+3 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1775 | \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.108 |
|
| 1776 |
\begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1777 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1778 |
\begin{align*}
y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1779 |
\begin{align*}
t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1780 |
\begin{align*}
y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1781 |
\begin{align*}
y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1782 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1783 |
\begin{align*}
y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1784 |
\begin{align*}
\left (x +1\right )^{3} y^{\prime \prime }+\left (x^{2}-1\right ) \left (x +1\right ) y^{\prime }+\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
✗ |
✗ |
✓ |
✗ |
0.108 |
|
| 1785 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime }&=x^{5}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1786 |
\begin{align*}
y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {9 y}{x^{4}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1787 |
\begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.108 |
|
| 1788 |
\begin{align*}
x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1789 |
\begin{align*}
{y^{\prime }}^{2}-y^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.108 |
|
| 1790 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1791 |
\begin{align*}
\frac {y}{t}+y^{\prime }&=\cos \left (t \right )+\frac {\sin \left (t \right )}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1792 |
\begin{align*}
y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.109 |
|
| 1793 |
\begin{align*}
y^{\prime }+\frac {m y}{x}&=\ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1794 | \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=36 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} Using Laplace transform method. | ✓ | ✓ | ✓ | ✓ | 0.109 |
|
| 1795 |
\begin{align*}
12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1796 |
\begin{align*}
y^{\prime \prime \prime \prime }&=5 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1797 |
\begin{align*}
x^{3} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.109 |
|
| 1798 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1799 |
\begin{align*}
y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.109 |
|
| 1800 |
\begin{align*}
4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.109 |
|