2.3.1 Problems 1 to 100

Table 2.533: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

1

22907

\begin{align*} y^{\prime \prime }&=x-2 \\ x^{\prime \prime }&=2+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

0.016

2

22908

\begin{align*} x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\ x+y^{\prime \prime }&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (\pi \right ) &= 2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

0.016

3

22911

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.017

4

22906

\begin{align*} x^{\prime \prime }&=-2 y \\ y^{\prime }&=y-x^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 10 \\ y \left (0\right ) &= 5 \\ \end{align*}

0.018

5

22257

\begin{align*} y^{\prime \prime }+z+y&=0 \\ y^{\prime }+z^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

0.019

6

22264

\begin{align*} u^{\prime \prime }-2 v&=2 \\ u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\ \end{align*}
With initial conditions
\begin{align*} u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 2 \\ v \left (0\right ) &= 1 \\ \end{align*}

0.019

7

18420

\begin{align*} x^{\prime \prime }&=x^{2}+y \\ y^{\prime }&=-2 x x^{\prime }+x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.020

8

22258

\begin{align*} z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\ y^{\prime \prime }-z&=\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.020

9

22885

\begin{align*} y^{\prime \prime }&=x \\ y^{\prime \prime }&=y \\ \end{align*}

0.020

10

22886

\begin{align*} y^{\prime \prime }&=x-2 \\ y^{\prime \prime }&=2+y \\ \end{align*}

0.020

11

23446

\begin{align*} y^{\prime \prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.021

12

24088

\begin{align*} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.021

13

24089

\begin{align*} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.021

14

24092

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.021

15

13058

\begin{align*} y^{\prime \prime \prime }&=f \left (y\right ) \\ \end{align*}

0.022

16

6608

\begin{align*} y^{\prime \prime \prime }&=y x \\ \end{align*}

0.023

17

10458

\begin{align*} y^{\prime \prime \prime }-y x&=0 \\ \end{align*}

0.023

18

23451

\begin{align*} y^{\prime \prime \prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.023

19

23775

\begin{align*} x^{\prime }&=y^{2}-x^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

0.023

20

23819

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

0.023

21

13080

\begin{align*} t x^{\prime }+y&=0 \\ t y^{\prime }+x&=0 \\ \end{align*}

0.024

22

15114

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

0.024

23

18417

\begin{align*} x^{\prime \prime }&=y \\ y^{\prime \prime }&=x \\ \end{align*}

0.024

24

18635

\begin{align*} x^{\prime }&=x+y+4 \\ y^{\prime }&=-2 x+\sin \left (t \right ) y \\ \end{align*}

0.024

25

22799

\begin{align*} y^{\prime \prime \prime }&=\frac {24 x +24 y}{x^{3}} \\ \end{align*}

0.024

26

22895

\begin{align*} x^{\prime \prime }+y^{\prime }+x&=y+\sin \left (t \right ) \\ y^{\prime \prime }+x^{\prime }-y&=2 t^{2}-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= -1 \\ y \left (0\right ) &= -{\frac {9}{2}} \\ y^{\prime }\left (0\right ) &= -{\frac {7}{2}} \\ \end{align*}

0.024

27

23798

\begin{align*} x^{\prime }&=y+x^{2}-x y \\ y^{\prime }&=-2 x+3 y+y^{2} \\ \end{align*}

0.024

28

24094

\begin{align*} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{x +1}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.024

29

18715

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x-\frac {x^{3}}{5}-\frac {y}{5} \\ \end{align*}

0.025

30

19062

\begin{align*} x^{\prime }&=1+5 y \\ y^{\prime }&=1-6 x^{2} \\ \end{align*}

0.025

31

22890

\begin{align*} x^{\prime \prime }+2 y^{\prime }+8 x&=32 t \\ y^{\prime \prime }+3 x^{\prime }-2 y&=60 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 6 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= -24 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.025

32

23093

\begin{align*} x^{\prime \prime }+y^{\prime \prime }&=t \\ x^{\prime \prime }-y^{\prime \prime }&=3 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.025

33

23951

\begin{align*} y^{\prime } x&=y \\ z^{\prime }&=3 y-x \\ \end{align*}

0.025

34

24093

\begin{align*} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{x +1}-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.025

35

3831

\begin{align*} x_{1}^{\prime }&=\frac {x_{1}}{t} \\ x_{2}^{\prime }&=x_{2} \\ \end{align*}

0.026

36

6750

\begin{align*} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

0.026

37

9437

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.026

38

9486

\begin{align*} x^{\prime }&=t y+1 \\ y^{\prime }&=-t x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.026

39

18422

\begin{align*} x^{\prime }&=-\frac {1}{y} \\ y^{\prime }&=\frac {1}{x} \\ \end{align*}

0.026

40

18423

\begin{align*} x^{\prime }&=\frac {x}{y} \\ y^{\prime }&=\frac {y}{x} \\ \end{align*}

0.026

41

18708

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=y+2 x y \\ \end{align*}

0.026

42

20209

\begin{align*} x^{\prime \prime }-3 x-4 y&=0 \\ x+y^{\prime \prime }+y&=0 \\ \end{align*}

0.026

43

22265

\begin{align*} w^{\prime \prime }-2 z&=0 \\ w^{\prime }+y^{\prime }-z&=2 t \\ w^{\prime }-2 y+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.026

44

22266

\begin{align*} w^{\prime \prime }+y+z&=-1 \\ w+y^{\prime \prime }-z&=0 \\ -w-y^{\prime }+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 1 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.026

45

22898

\begin{align*} x^{\prime }&=x y \\ y^{\prime }&=1+y^{2} \\ z^{\prime }&=z \\ \end{align*}

0.026

46

23575

\begin{align*} t x^{\prime }&=3 x-2 y \\ t y^{\prime }&=x+y-t^{2} \\ \end{align*}

0.026

47

4555

\begin{align*} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.027

48

6620

\begin{align*} y+2 y^{\prime } x +y^{\prime \prime \prime }&=0 \\ \end{align*}

0.027

49

6792

\begin{align*} a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

0.027

50

9436

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.027

51

12710

\begin{align*} y^{\prime \prime \prime }-a \,x^{b} y&=0 \\ \end{align*}

0.027

52

12728

\begin{align*} x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x&=0 \\ \end{align*}

0.027

53

12780

\begin{align*} y^{\prime \prime \prime }+y^{\prime } x +n y&=0 \\ \end{align*}

0.027

54

12781

\begin{align*} y^{\prime \prime \prime }-y^{\prime } x -n y&=0 \\ \end{align*}

0.027

55

12831

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-a y&=0 \\ \end{align*}

0.027

56

13044

\begin{align*} a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

0.027

57

15129

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=1 \\ \end{align*}

0.027

58

15130

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

0.027

59

18421

\begin{align*} x^{\prime }&=x^{2}+y^{2} \\ y^{\prime }&=2 x y \\ \end{align*}

0.027

60

18713

\begin{align*} x^{\prime }&=\left (2+x\right ) \left (-x+y\right ) \\ y^{\prime }&=y-x^{2}-y^{2} \\ \end{align*}

0.027

61

22893

\begin{align*} r^{\prime \prime }\left (t \right )&=r \left (t \right )+y \\ y^{\prime \prime }&=5 r \left (t \right )-3 y+t^{2} \\ \end{align*}

0.027

62

23114

\begin{align*} y^{\prime \prime \prime }&=0 \\ \end{align*}

0.027

63

23799

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

0.027

64

23815

\begin{align*} x^{\prime }&=-2 x+y-x^{2}+2 y^{2} \\ y^{\prime }&=3 x+2 y+x^{2} y^{2} \\ \end{align*}

0.027

65

23935

\begin{align*} y^{\prime } y&=-x \\ y z^{\prime }&=2 \\ \end{align*}

0.027

66

25169

\begin{align*} y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\ y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 3 \\ y_{2} \left (0\right ) &= 0 \\ y_{2}^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.027

67

9485

\begin{align*} x^{\prime }&=x y+1 \\ y^{\prime }&=-x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.028

68

12825

\begin{align*} y^{\left (5\right )}-a x y-b&=0 \\ \end{align*}

0.028

69

15132

\begin{align*} y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\ \end{align*}

0.028

70

18419

\begin{align*} x^{\prime \prime }&=3 x+y \\ y^{\prime }&=-2 x \\ \end{align*}

0.028

71

18634

\begin{align*} x^{\prime }&=-x+t y \\ y^{\prime }&=t x-y \\ \end{align*}

0.028

72

22800

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime } x -y^{\prime } x -2 y x&=1 \\ \end{align*}

0.028

73

22929

\begin{align*} x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\ y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\ \end{align*}

0.028

74

23240

\begin{align*} y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \\ \end{align*}

0.028

75

23241

\begin{align*} y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=5 \\ \end{align*}

0.028

76

23259

\begin{align*} y^{\prime \prime \prime }&=0 \\ \end{align*}

0.028

77

23552

\begin{align*} y^{\left (5\right )}-y^{\prime }-\frac {4 y}{x}&=0 \\ \end{align*}

0.028

78

23584

\begin{align*} t x^{\prime }&=3 x-2 y \\ t y^{\prime }&=x+y-t^{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (1\right ) &= 1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

0.028

79

23778

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

0.028

80

25688

\begin{align*} x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\ y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\ \end{align*}

0.028

81

6621

\begin{align*} a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

0.029

82

6671

\begin{align*} y x +3 y^{\prime }+x y^{\prime \prime \prime }&=0 \\ \end{align*}

0.029

83

6725

\begin{align*} y^{\prime \prime \prime \prime }&=0 \\ \end{align*}

0.029

84

6751

\begin{align*} y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x^{3} \\ \end{align*}

0.029

85

6791

\begin{align*} -y^{\prime } y+{y^{\prime }}^{2}+y^{\prime \prime \prime }&=0 \\ \end{align*}

0.029

86

6796

\begin{align*} 3 y^{\prime } y^{\prime \prime }+\left (a +y\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

0.029

87

8152

\begin{align*} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\ \end{align*}

0.029

88

9435

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.029

89

9438

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.029

90

12713

\begin{align*} a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\ \end{align*}

0.029

91

12774

\begin{align*} x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y&=0 \\ \end{align*}

0.029

92

12832

\begin{align*} x^{10} y^{\left (5\right )}-a y&=0 \\ \end{align*}

0.029

93

13089

\begin{align*} x^{\prime \prime }+a y&=0 \\ y^{\prime \prime }-a^{2} y&=0 \\ \end{align*}

0.029

94

16952

\begin{align*} x^{\prime }&=x y-6 y \\ y^{\prime }&=x-y-5 \\ \end{align*}

0.029

95

18424

\begin{align*} x^{\prime }&=\frac {y}{x-y} \\ y^{\prime }&=\frac {x}{x-y} \\ \end{align*}

0.029

96

18439

\begin{align*} x^{\prime }&=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }&=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \\ \end{align*}

0.029

97

18631

\begin{align*} x^{\prime }&=-2 t x+y \\ y^{\prime }&=3 x-y \\ \end{align*}

0.029

98

18711

\begin{align*} x^{\prime }&=-\left (x-y\right ) \left (1-x-y\right ) \\ y^{\prime }&=x \left (2+y\right ) \\ \end{align*}

0.029

99

19061

\begin{align*} x^{\prime }&=-2 y+x y \\ y^{\prime }&=x+4 x y \\ \end{align*}

0.029

100

22078

\begin{align*} y y^{\prime \prime \prime }+y^{\prime } x +y&=x^{2} \\ \end{align*}

0.029