| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 1 |
\begin{align*}
y^{\prime \prime }&=x-2 \\
x^{\prime \prime }&=2+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.016 |
|
| 2 |
\begin{align*}
x^{\prime }+y^{\prime }&=\cos \left (t \right ) \\
x+y^{\prime \prime }&=2 \\
\end{align*} With initial conditions \begin{align*}
x \left (\pi \right ) &= 2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.016 |
|
| 3 |
\begin{align*}
x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\
y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.017 |
|
| 4 |
\begin{align*}
x^{\prime \prime }&=-2 y \\
y^{\prime }&=y-x^{\prime } \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 10 \\
y \left (0\right ) &= 5 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.018 |
|
| 5 |
\begin{align*}
y^{\prime \prime }+z+y&=0 \\
y^{\prime }+z^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.019 |
|
| 6 |
\begin{align*}
u^{\prime \prime }-2 v&=2 \\
u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\
\end{align*} With initial conditions \begin{align*}
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 2 \\
v \left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.019 |
|
| 7 |
\begin{align*}
x^{\prime \prime }&=x^{2}+y \\
y^{\prime }&=-2 x x^{\prime }+x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.020 |
|
| 8 |
\begin{align*}
z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\
y^{\prime \prime }-z&=\sin \left (t \right ) \\
\end{align*} With initial conditions \begin{align*}
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= -1 \\
z^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.020 |
|
| 9 |
\begin{align*}
y^{\prime \prime }&=x \\
y^{\prime \prime }&=y \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.020 |
|
| 10 |
\begin{align*}
y^{\prime \prime }&=x-2 \\
y^{\prime \prime }&=2+y \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.020 |
|
| 11 |
\begin{align*}
y^{\prime \prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.021 |
|
| 12 |
\begin{align*}
y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.021 |
|
| 13 |
\begin{align*}
\left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.021 |
|
| 14 |
\begin{align*}
x^{2} y^{\prime \prime \prime }-y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.021 |
|
| 15 |
\begin{align*}
y^{\prime \prime \prime }&=f \left (y\right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.022 |
|
| 16 |
\begin{align*}
y^{\prime \prime \prime }&=y x \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| 17 |
\begin{align*}
y^{\prime \prime \prime }-y x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| 18 | \begin{align*}
y^{\prime \prime \prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). | ✗ | ✓ | ✓ | ✗ | 0.023 |
|
| 19 |
\begin{align*}
x^{\prime }&=y^{2}-x^{2} \\
y^{\prime }&=2 x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| 20 |
\begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.023 |
|
| 21 |
\begin{align*}
t x^{\prime }+y&=0 \\
t y^{\prime }+x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.024 |
|
| 22 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=\frac {y^{2}}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.024 |
|
| 23 |
\begin{align*}
x^{\prime \prime }&=y \\
y^{\prime \prime }&=x \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.024 |
|
| 24 |
\begin{align*}
x^{\prime }&=x+y+4 \\
y^{\prime }&=-2 x+\sin \left (t \right ) y \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.024 |
|
| 25 |
\begin{align*}
y^{\prime \prime \prime }&=\frac {24 x +24 y}{x^{3}} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.024 |
|
| 26 |
\begin{align*}
x^{\prime \prime }+y^{\prime }+x&=y+\sin \left (t \right ) \\
y^{\prime \prime }+x^{\prime }-y&=2 t^{2}-x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= -1 \\
y \left (0\right ) &= -{\frac {9}{2}} \\
y^{\prime }\left (0\right ) &= -{\frac {7}{2}} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.024 |
|
| 27 |
\begin{align*}
x^{\prime }&=y+x^{2}-x y \\
y^{\prime }&=-2 x+3 y+y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.024 |
|
| 28 |
\begin{align*}
x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{x +1}+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.024 |
|
| 29 |
\begin{align*}
x^{\prime }&=y \\
y^{\prime }&=x-\frac {x^{3}}{5}-\frac {y}{5} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.025 |
|
| 30 |
\begin{align*}
x^{\prime }&=1+5 y \\
y^{\prime }&=1-6 x^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.025 |
|
| 31 |
\begin{align*}
x^{\prime \prime }+2 y^{\prime }+8 x&=32 t \\
y^{\prime \prime }+3 x^{\prime }-2 y&=60 \,{\mathrm e}^{-t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 6 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= -24 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.025 |
|
| 32 |
\begin{align*}
x^{\prime \prime }+y^{\prime \prime }&=t \\
x^{\prime \prime }-y^{\prime \prime }&=3 t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.025 |
|
| 33 |
\begin{align*}
y^{\prime } x&=y \\
z^{\prime }&=3 y-x \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.025 |
|
| 34 |
\begin{align*}
x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{x +1}-\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.025 |
|
| 35 |
\begin{align*}
x_{1}^{\prime }&=\frac {x_{1}}{t} \\
x_{2}^{\prime }&=x_{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 36 |
\begin{align*}
y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.026 |
|
| 37 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.026 |
|
| 38 | \begin{align*}
x^{\prime }&=t y+1 \\
y^{\prime }&=-t x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -1 \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 0.026 |
|
| 39 |
\begin{align*}
x^{\prime }&=-\frac {1}{y} \\
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 40 |
\begin{align*}
x^{\prime }&=\frac {x}{y} \\
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 41 |
\begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=y+2 x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.026 |
|
| 42 |
\begin{align*}
x^{\prime \prime }-3 x-4 y&=0 \\
x+y^{\prime \prime }+y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 43 |
\begin{align*}
w^{\prime \prime }-2 z&=0 \\
w^{\prime }+y^{\prime }-z&=2 t \\
w^{\prime }-2 y+z^{\prime \prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
w \left (0\right ) &= 0 \\
w^{\prime }\left (0\right ) &= 0 \\
z \left (0\right ) &= 1 \\
z^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 44 |
\begin{align*}
w^{\prime \prime }+y+z&=-1 \\
w+y^{\prime \prime }-z&=0 \\
-w-y^{\prime }+z^{\prime \prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
w \left (0\right ) &= 0 \\
w^{\prime }\left (0\right ) &= 1 \\
z \left (0\right ) &= -1 \\
z^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.026 |
|
| 45 |
\begin{align*}
x^{\prime }&=x y \\
y^{\prime }&=1+y^{2} \\
z^{\prime }&=z \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.026 |
|
| 46 |
\begin{align*}
t x^{\prime }&=3 x-2 y \\
t y^{\prime }&=x+y-t^{2} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.026 |
|
| 47 |
\begin{align*}
x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y&=40 \,{\mathrm e}^{3 t} \\
x^{\prime }+x-y^{\prime }&=36 \,{\mathrm e}^{t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.027 |
|
| 48 |
\begin{align*}
y+2 y^{\prime } x +y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 49 |
\begin{align*}
a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| 50 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 51 |
\begin{align*}
y^{\prime \prime \prime }-a \,x^{b} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 52 |
\begin{align*}
x y^{\prime \prime \prime }+3 y^{\prime \prime }+y x&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 53 |
\begin{align*}
y^{\prime \prime \prime }+y^{\prime } x +n y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 54 |
\begin{align*}
y^{\prime \prime \prime }-y^{\prime } x -n y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 55 |
\begin{align*}
x^{2} y^{\prime \prime \prime \prime }-a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 56 |
\begin{align*}
a y y^{\prime \prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| 57 |
\begin{align*}
y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| 58 | \begin{align*}
y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\
\end{align*} | ✗ | ✓ | ✓ | ✗ | 0.027 |
|
| 59 |
\begin{align*}
x^{\prime }&=x^{2}+y^{2} \\
y^{\prime }&=2 x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 60 |
\begin{align*}
x^{\prime }&=\left (2+x\right ) \left (-x+y\right ) \\
y^{\prime }&=y-x^{2}-y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| 61 |
\begin{align*}
r^{\prime \prime }\left (t \right )&=r \left (t \right )+y \\
y^{\prime \prime }&=5 r \left (t \right )-3 y+t^{2} \\
\end{align*} |
✗ |
✗ |
✓ |
✓ |
0.027 |
|
| 62 |
\begin{align*}
y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.027 |
|
| 63 |
\begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 64 |
\begin{align*}
x^{\prime }&=-2 x+y-x^{2}+2 y^{2} \\
y^{\prime }&=3 x+2 y+x^{2} y^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| 65 |
\begin{align*}
y^{\prime } y&=-x \\
y z^{\prime }&=2 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.027 |
|
| 66 |
\begin{align*}
y_{1}^{\prime }-2 y_{1}&=2 y_{2} \\
y_{2}^{\prime \prime }+2 y_{2}^{\prime }+y_{2}&=-2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 3 \\
y_{2} \left (0\right ) &= 0 \\
y_{2}^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.027 |
|
| 67 |
\begin{align*}
x^{\prime }&=x y+1 \\
y^{\prime }&=-x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| 68 |
\begin{align*}
y^{\left (5\right )}-a x y-b&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| 69 |
\begin{align*}
y^{\prime \prime \prime }+y x&=\cosh \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| 70 |
\begin{align*}
x^{\prime \prime }&=3 x+y \\
y^{\prime }&=-2 x \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| 71 |
\begin{align*}
x^{\prime }&=-x+t y \\
y^{\prime }&=t x-y \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| 72 |
\begin{align*}
x y^{\prime \prime \prime }+2 y^{\prime \prime } x -y^{\prime } x -2 y x&=1 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| 73 |
\begin{align*}
x^{\prime \prime }&=y+4 \,{\mathrm e}^{-2 t} \\
y^{\prime \prime }&=x-{\mathrm e}^{-2 t} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| 74 |
\begin{align*}
y^{\prime \prime \prime }+x^{2} y&={\mathrm e}^{x} \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| 75 |
\begin{align*}
y^{\prime \prime }+y y^{\prime \prime \prime \prime }&=5 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| 76 |
\begin{align*}
y^{\prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.028 |
|
| 77 |
\begin{align*}
y^{\left (5\right )}-y^{\prime }-\frac {4 y}{x}&=0 \\
\end{align*} |
✗ |
✗ |
✓ |
✓ |
0.028 |
|
| 78 | \begin{align*}
t x^{\prime }&=3 x-2 y \\
t y^{\prime }&=x+y-t^{2} \\
\end{align*} With initial conditions \begin{align*}
x \left (1\right ) &= 1 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} | ✗ | ✓ | ✓ | ✓ | 0.028 |
|
| 79 |
\begin{align*}
x^{\prime }&=x-x y \\
y^{\prime }&=-y+x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| 80 |
\begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.028 |
|
| 81 |
\begin{align*}
a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 82 |
\begin{align*}
y x +3 y^{\prime }+x y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.029 |
|
| 83 |
\begin{align*}
y^{\prime \prime \prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.029 |
|
| 84 |
\begin{align*}
y^{2}-2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x^{3} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| 85 |
\begin{align*}
-y^{\prime } y+{y^{\prime }}^{2}+y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| 86 |
\begin{align*}
3 y^{\prime } y^{\prime \prime }+\left (a +y\right ) y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 87 |
\begin{align*}
x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| 88 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 89 |
\begin{align*}
x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 90 |
\begin{align*}
a y+2 a x y^{\prime }+y^{\prime \prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 91 |
\begin{align*}
x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 92 |
\begin{align*}
x^{10} y^{\left (5\right )}-a y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 93 |
\begin{align*}
x^{\prime \prime }+a y&=0 \\
y^{\prime \prime }-a^{2} y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| 94 |
\begin{align*}
x^{\prime }&=x y-6 y \\
y^{\prime }&=x-y-5 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| 95 |
\begin{align*}
x^{\prime }&=\frac {y}{x-y} \\
y^{\prime }&=\frac {x}{x-y} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| 96 |
\begin{align*}
x^{\prime }&=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\
y^{\prime }&=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| 97 |
\begin{align*}
x^{\prime }&=-2 t x+y \\
y^{\prime }&=3 x-y \\
\end{align*} |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| 98 | \begin{align*}
x^{\prime }&=-\left (x-y\right ) \left (1-x-y\right ) \\
y^{\prime }&=x \left (2+y\right ) \\
\end{align*} | ✗ | ✗ | ✗ | ✗ | 0.029 |
|
| 99 |
\begin{align*}
x^{\prime }&=-2 y+x y \\
y^{\prime }&=x+4 x y \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| 100 |
\begin{align*}
y y^{\prime \prime \prime }+y^{\prime } x +y&=x^{2} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.029 |
|