2.2.231 Problems 23001 to 23100

Table 2.475: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

23001

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.864

23002

\begin{align*} y^{\prime \prime }+7 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

23003

\begin{align*} 3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

23004

\begin{align*} 8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

23005

\begin{align*} y^{\prime \prime }-9 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

23006

\begin{align*} y^{\prime \prime }-2 y^{\prime }-63 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.285

23007

\begin{align*} 20 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179

23008

\begin{align*} 35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

23009

\begin{align*} 3 y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

23010

\begin{align*} 12 x^{\prime \prime }-25 x^{\prime }+12 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

23011

\begin{align*} 38 x^{\prime \prime }+10 x^{\prime }-3 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

23012

\begin{align*} 2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.306

23013

\begin{align*} y^{\prime \prime }-3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.272

23014

\begin{align*} y^{\prime \prime }-8 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.490

23015

\begin{align*} 4 y^{\prime \prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.010

23016

\begin{align*} z^{\prime \prime }-3 z^{\prime }+z&=0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

23017

\begin{align*} y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.214

23018

\begin{align*} x^{\prime \prime }+36 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi }{12}\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.852

23019

\begin{align*} y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi \sqrt {3}}{6}\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.989

23020

\begin{align*} z^{\prime \prime }+g z&=0 \\ z \left (\frac {\pi }{3 \sqrt {g}}\right ) &= 5 \\ z \left (\frac {2 \pi }{3 \sqrt {g}}\right ) &= \frac {\pi }{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.304

23021

\begin{align*} 9 y^{\prime \prime }+49 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.477

23022

\begin{align*} y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

23023

\begin{align*} x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.396

23024

\begin{align*} z^{\prime \prime }-7 z^{\prime }-13 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.262

23025

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

23026

\begin{align*} y^{\prime \prime }-5 y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

23027

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

23028

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

23029

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

23030

\begin{align*} z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23031

\begin{align*} z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.220

23032

\begin{align*} y^{\prime \prime }-9 y&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.215

23033

\begin{align*} y^{\prime \prime }-3 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

23034

\begin{align*} x^{\prime \prime }-3 x^{\prime }-4 x&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

23035

\begin{align*} z^{\prime \prime }-3 z^{\prime }+2 z&=4 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.344

23036

\begin{align*} x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.304

23037

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=4 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.410

23038

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

23039

\begin{align*} y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.432

23040

\begin{align*} x^{\prime \prime }+9 x^{\prime }+8 x&=\sin \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.360

23041

\begin{align*} x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

23042

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

23043

\begin{align*} z^{\prime \prime }-4 z&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.387

23044

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

23045

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.389

23046

\begin{align*} \left (1-y^{2}\right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.326

23047

\begin{align*} T^{\prime \prime }+{T^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.814

23048

\begin{align*} y^{\prime \prime } {y^{\prime }}^{2}-x^{2}&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1.661

23049

\begin{align*} x^{2} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.287

23050

\begin{align*} x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.782

23051

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.813

23052

\begin{align*} z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.927

23053

\begin{align*} s^{\prime \prime }&=5 t^{2}-7 t \\ s \left (0\right ) &= 0 \\ s \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.738

23054

\begin{align*} s^{\prime \prime }&=-9 s \\ s \left (0\right ) &= 9 \\ s^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.756

23055

\begin{align*} r^{\prime }&=-a \sin \left (\theta \right ) \\ r \left (0\right ) &= 2 a \\ \end{align*}

[_quadrature]

0.280

23056

\begin{align*} \frac {r^{\prime }}{r}&=\tan \left (\theta \right ) \\ \end{align*}

[_separable]

1.621

23057

\begin{align*} \left (1+\cos \left (\theta \right )\right ) r^{\prime }&=-r \sin \left (\theta \right ) \\ \end{align*}

[_separable]

2.355

23058

\begin{align*} \cot \left (\theta \right ) r^{\prime }&=r+b \\ \end{align*}

[_separable]

1.805

23059

\begin{align*} r r^{\prime }&=a \\ r \left (0\right ) &= b \\ \end{align*}

[_quadrature]

2.156

23060

\begin{align*} r^{\prime } \left (1+\frac {\cos \left (\theta \right )}{2}\right )-r \sin \left (\theta \right )&=0 \\ r \left (\frac {\pi }{2}\right ) &= 2 a \\ \end{align*}

[_separable]

3.199

23061

\begin{align*} \sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\ \end{align*}

[_quadrature]

0.304

23062

\begin{align*} r^{\prime }&=0 \\ r \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.260

23063

\begin{align*} r^{\prime }&=c \\ r \left (0\right ) &= a \\ \end{align*}

[_quadrature]

1.952

23064

\begin{align*} r^{\prime } \left (\sin \left (\theta \right )-m \cos \left (\theta \right )\right )+r \left (\cos \left (\theta \right )+m \sin \left (\theta \right )\right )&=0 \\ \end{align*}

[_separable]

3.673

23065

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

23066

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

23067

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.294

23068

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

23069

\begin{align*} y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

23070

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

23071

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }-5 y&=2 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

23072

\begin{align*} y^{\prime \prime }-7 y^{\prime }+2 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

23073

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

23074

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

23075

\begin{align*} y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

23076

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

23077

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=5 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

23078

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=2 x^{3}+7 x^{2}-x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

23079

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

23080

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=5 \cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

23081

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.634

23082

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

23083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.633

23084

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=1+x^{2}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

23085

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

23086

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.510

23087

\begin{align*} y^{\prime \prime }-4 y&=12 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.171

23088

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

23089

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

23090

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

23091

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

23092

\begin{align*} x^{\prime }+y&=4 \\ x-y^{\prime }&=3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.186

23093

\begin{align*} x^{\prime \prime }+y^{\prime \prime }&=t \\ x^{\prime \prime }-y^{\prime \prime }&=3 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.025

23094

\begin{align*} 4 x^{\prime }-2 y&=\cos \left (2 t \right ) \\ x-2 y^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.177

23095

\begin{align*} x^{\prime }+2 x+y^{\prime }+y&={\mathrm e}^{-3 t} \\ 5 x+y^{\prime }+3 y&=5 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.201

23096

\begin{align*} 4 x^{\prime }+2 y^{\prime }+3 x&=E \sin \left (t \right ) \\ 4 x+2 x^{\prime }+3 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.180

23097

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.666

23098

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.643

23099

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.610

23100

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.843