| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-63 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
20 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
3 y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
12 x^{\prime \prime }-25 x^{\prime }+12 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
38 x^{\prime \prime }+10 x^{\prime }-3 x&=0 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| \begin{align*}
y^{\prime \prime }-8 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| \begin{align*}
4 y^{\prime \prime }-7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.010 |
|
| \begin{align*}
z^{\prime \prime }-3 z^{\prime }+z&=0 \\
z \left (0\right ) &= 1 \\
z^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
x^{\prime \prime }+36 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi }{12}\right ) &= 7 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.852 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi \sqrt {3}}{6}\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
z^{\prime \prime }+g z&=0 \\
z \left (\frac {\pi }{3 \sqrt {g}}\right ) &= 5 \\
z \left (\frac {2 \pi }{3 \sqrt {g}}\right ) &= \frac {\pi }{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| \begin{align*}
9 y^{\prime \prime }+49 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
z^{\prime \prime }-7 z^{\prime }-13 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.215 |
|
| \begin{align*}
y^{\prime \prime }-3 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-4 x&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
z^{\prime \prime }-3 z^{\prime }+2 z&=4 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=4 \,{\mathrm e}^{3 t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.410 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
x^{\prime \prime }+9 x^{\prime }+8 x&=\sin \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
z^{\prime \prime }-4 z&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&={\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
\left (1-y^{2}\right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.326 |
|
| \begin{align*}
T^{\prime \prime }+{T^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| \begin{align*}
y^{\prime \prime } {y^{\prime }}^{2}-x^{2}&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✗ |
1.661 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.927 |
|
| \begin{align*}
s^{\prime \prime }&=5 t^{2}-7 t \\
s \left (0\right ) &= 0 \\
s \left (1\right ) &= {\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
s^{\prime \prime }&=-9 s \\
s \left (0\right ) &= 9 \\
s^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.756 |
|
| \begin{align*}
r^{\prime }&=-a \sin \left (\theta \right ) \\
r \left (0\right ) &= 2 a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
\frac {r^{\prime }}{r}&=\tan \left (\theta \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.621 |
|
| \begin{align*}
\left (1+\cos \left (\theta \right )\right ) r^{\prime }&=-r \sin \left (\theta \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| \begin{align*}
\cot \left (\theta \right ) r^{\prime }&=r+b \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.805 |
|
| \begin{align*}
r r^{\prime }&=a \\
r \left (0\right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
2.156 |
|
| \begin{align*}
r^{\prime } \left (1+\frac {\cos \left (\theta \right )}{2}\right )-r \sin \left (\theta \right )&=0 \\
r \left (\frac {\pi }{2}\right ) &= 2 a \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.199 |
|
| \begin{align*}
\sin \left (\theta \right )^{2} r^{\prime }&=-b \cos \left (\theta \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
r^{\prime }&=0 \\
r \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
r^{\prime }&=c \\
r \left (0\right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.952 |
|
| \begin{align*}
r^{\prime } \left (\sin \left (\theta \right )-m \cos \left (\theta \right )\right )+r \left (\cos \left (\theta \right )+m \sin \left (\theta \right )\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.673 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }-5 y&=2 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.374 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+2 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.564 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=5 x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=2 x^{3}+7 x^{2}-x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=5 \cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.634 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.633 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1+x^{2}+{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.445 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
x^{\prime }+y&=4 \\
x-y^{\prime }&=3 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
x^{\prime \prime }+y^{\prime \prime }&=t \\
x^{\prime \prime }-y^{\prime \prime }&=3 t \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.025 |
|
| \begin{align*}
4 x^{\prime }-2 y&=\cos \left (2 t \right ) \\
x-2 y^{\prime }&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.177 |
|
| \begin{align*}
x^{\prime }+2 x+y^{\prime }+y&={\mathrm e}^{-3 t} \\
5 x+y^{\prime }+3 y&=5 \,{\mathrm e}^{-t} \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= -1 \\
y \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
4 x^{\prime }+2 y^{\prime }+3 x&=E \sin \left (t \right ) \\
4 x+2 x^{\prime }+3 y&=0 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.666 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|