2.2.228 Problems 22701 to 22800

Table 2.469: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

22701

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.337

22702

\begin{align*} 4 y+y^{\prime \prime }&=8 \cos \left (2 x \right )-4 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.420

22703

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=x +\sin \left (x \right )+\cos \left (x \right ) \\ \end{align*}

[[_3rd_order, _missing_y]]

0.483

22704

\begin{align*} i^{\prime \prime }+9 i&=12 \cos \left (3 t \right ) \\ i \left (0\right ) &= 4 \\ i^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

22705

\begin{align*} s^{\prime \prime }+s^{\prime }&=t +{\mathrm e}^{-t} \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

22706

\begin{align*} y^{\prime \prime \prime \prime }-y&=\cosh \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.428

22707

\begin{align*} y^{\prime \prime }+y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

22708

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\lambda x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

22709

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

22710

\begin{align*} y^{\prime \prime }+y&=x \,{\mathrm e}^{-x}+3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

22711

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=\sin \left (2 x \right ) x +x^{3} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.687

22712

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }&=3 x^{2}-4 \,{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.125

22713

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

22714

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \cos \left (x \right )+2 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.591

22715

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=3 \,{\mathrm e}^{x}+2 \,{\mathrm e}^{-x}+x^{3} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

22716

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

22717

\begin{align*} 4 y+y^{\prime \prime }&=x^{2}+3 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.646

22718

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.860

22719

\begin{align*} q^{\prime \prime }+q&=t \sin \left (t \right )+\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

22720

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.121

22721

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=t \left (\sin \left (\omega t \right )+\cos \left (\omega t \right )\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.193

22722

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \left (1+\cos \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

22723

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \cos \left (2 x \right ) \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.056

22724

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y&=\sinh \left (x \right )^{4} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.610

22725

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

22726

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

22727

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

22728

\begin{align*} 4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

22729

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

22730

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x}+x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

22731

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

22732

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

22733

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

22734

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.429

22735

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

22736

\begin{align*} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.095

22737

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&={\mathrm e}^{x}+{\mathrm e}^{-x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.307

22738

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.864

22739

\begin{align*} y^{\prime \prime }-y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.219

22740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

22741

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

22742

\begin{align*} y^{\prime \prime }-y&=2 x^{4}-3 x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

22743

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

22744

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

22745

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

22746

\begin{align*} y^{\prime \prime \prime }-y^{\prime }&=x^{5}+1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.108

22747

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.249

22748

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y&=2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.131

22749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

22750

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

22751

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.448

22752

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.830

22753

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.279

22754

\begin{align*} x^{2} y^{\prime \prime }-2 y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.527

22755

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.950

22756

\begin{align*} x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y&=x^{2}+16 \ln \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.564

22757

\begin{align*} x^{2} y^{\prime \prime }+y&=16 \sin \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.349

22758

\begin{align*} t^{2} i^{\prime \prime }+2 i^{\prime } t +i&=t \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.096

22759

\begin{align*} y^{\prime \prime }&=\frac {\frac {4 x}{25}-\frac {4 y}{25}}{x^{2}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.448

22760

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=\sqrt {x}+\frac {1}{\sqrt {x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.470

22761

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x&=5 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.514

22762

\begin{align*} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x +1 \\ \end{align*}

[[_3rd_order, _missing_y]]

0.213

22763

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=x \ln \left (x \right ) \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.330

22764

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+y^{\prime } x -y&=1 \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.405

22765

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=x^{2}-4 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.179

22766

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.730

22767

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.859

22768

\begin{align*} \left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y&=24 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.054

22769

\begin{align*} \left (2+x \right )^{2} y^{\prime \prime }-y&=4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

22770

\begin{align*} \left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

72.934

22771

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.923

22772

\begin{align*} y^{\prime \prime } x -y^{\prime }-4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.632

22773

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=3 x -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.718

22774

\begin{align*} \sin \left (x \right ) y^{\prime \prime }+\left (3 \sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{3} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.778

22775

\begin{align*} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.160

22776

\begin{align*} y^{\prime \prime }+3 y&=x^{2}+1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.459

22777

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.294

22778

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

22779

\begin{align*} y^{\prime \prime \prime }-4 y&=4 x +2+3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.125

22780

\begin{align*} i^{\prime \prime }+2 i^{\prime }+5 i&=34 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

22781

\begin{align*} x^{\prime \prime \prime \prime }-x&=8 \,{\mathrm e}^{-t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.102

22782

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.517

22783

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.279

22784

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=1 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.076

22785

\begin{align*} y^{\prime \prime \prime \prime }+16 y^{\prime \prime }&=64 \cos \left (4 x \right ) \\ \end{align*}

[[_high_order, _missing_y]]

0.380

22786

\begin{align*} 4 y+y^{\prime \prime }&=x \left (\cos \left (x \right )+1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

22787

\begin{align*} r^{\prime \prime }-2 r&=-{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

22788

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime }&=12 \,{\mathrm e}^{2 x}+24 x^{2} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.139

22789

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.628

22790

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.491

22791

\begin{align*} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s&=100 \cos \left (3 t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.120

22792

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

22793

\begin{align*} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime }&=x^{2}-x +{\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

0.184

22794

\begin{align*} i^{\prime \prime \prime \prime }+9 i^{\prime \prime }&=20 \,{\mathrm e}^{-t} \\ i \left (0\right ) &= 0 \\ i^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.129

22795

\begin{align*} x^{2} y^{\prime \prime \prime }-y^{\prime \prime } x +y^{\prime }&=\frac {\ln \left (x \right )}{x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.215

22796

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y&=64 \sin \left (2 x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.415

22797

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\ y \left (\frac {1}{2}\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.524

22798

\begin{align*} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\left (1+\sin \left (x \right )\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.170

22799

\begin{align*} y^{\prime \prime \prime }&=\frac {24 x +24 y}{x^{3}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.024

22800

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime } x -y^{\prime } x -2 y x&=1 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.028