2.2.223 Problems 22201 to 22300

Table 2.459: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

22201

\begin{align*} y^{\prime \prime }-2 y x&=x^{2} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.356

22202

\begin{align*} 8 x^{2} y^{\prime \prime }+10 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.607

22203

\begin{align*} 2 x^{2} y^{\prime \prime }+7 x \left (x +1\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.623

22204

\begin{align*} 3 x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.404

22205

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.383

22206

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.352

22207

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.435

22208

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.318

22209

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.607

22210

\begin{align*} x^{2} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } x +\left (x^{3}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.847

22211

\begin{align*} -a b y+\left (c -\left (a +b +1\right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.964

22212

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.582

22213

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.557

22214

\begin{align*} 3 x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.485

22215

\begin{align*} -y+y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.475

22216

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.378

22217

\begin{align*} x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.581

22218

\begin{align*} y^{\prime \prime } x -\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.534

22219

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (2 x^{2}+4 x \right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.522

22220

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.830

22221

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.350

22222

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.390

22223

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.311

22224

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.485

22225

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (-n^{2}+x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.729

22226

\begin{align*} y^{\prime \prime } x -3 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

1.098

22227

\begin{align*} y^{\prime }-5 y&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.115

22228

\begin{align*} y^{\prime }-5 y&={\mathrm e}^{5 x} \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.093

22229

\begin{align*} y^{\prime }-5 y&=0 \\ y \left (\pi \right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.093

22230

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.149

22231

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.128

22232

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.166

22233

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 t^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.155

22234

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.197

22235

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.180

22236

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

22237

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

22238

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_y]]

0.180

22239

\begin{align*} y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.075

22240

\begin{align*} y^{\prime }+2 y&=2 \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.080

22241

\begin{align*} y^{\prime }+2 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.113

22242

\begin{align*} y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.091

22243

\begin{align*} y^{\prime }+5 y&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.087

22244

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.079

22245

\begin{align*} y^{\prime \prime }-y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.144

22246

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.128

22247

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.171

22248

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.152

22249

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.222

22250

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.171

22251

\begin{align*} y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.918

22252

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.125

22253

\begin{align*} y^{\prime \prime \prime }-y&=5 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.212

22254

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.184

22255

\begin{align*} y^{\prime }+z&=t \\ z^{\prime }+4 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ z \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.154

22256

\begin{align*} w^{\prime }+y&=\sin \left (t \right ) \\ y^{\prime }-z&={\mathrm e}^{t} \\ w+y+z^{\prime }&=1 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ z \left (0\right ) &= 1 \\ w \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.184

22257

\begin{align*} y^{\prime \prime }+z+y&=0 \\ y^{\prime }+z^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.019

22258

\begin{align*} z^{\prime \prime }+y^{\prime }&=\cos \left (t \right ) \\ y^{\prime \prime }-z&=\sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.020

22259

\begin{align*} w^{\prime \prime }-y+2 z&=3 \,{\mathrm e}^{-t} \\ -2 w^{\prime }+2 y^{\prime }+z&=0 \\ 2 w^{\prime }-2 y+z^{\prime }+2 z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 2 \\ z \left (0\right ) &= 2 \\ z^{\prime }\left (0\right ) &= -2 \\ w \left (0\right ) &= 1 \\ w^{\prime }\left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.030

22260

\begin{align*} y^{\prime }+z&=t \\ z^{\prime }-y&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.115

22261

\begin{align*} y^{\prime }-z&=0 \\ y-z^{\prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.133

22262

\begin{align*} w^{\prime }-w-2 y&=1 \\ y^{\prime }-4 w-3 y&=-1 \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 2 \\ w \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.174

22263

\begin{align*} w^{\prime }-y&=0 \\ w+y^{\prime }+z&=1 \\ w-y+z^{\prime }&=2 \sin \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} y \left (0\right ) &= 1 \\ w \left (0\right ) &= 1 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.172

22264

\begin{align*} u^{\prime \prime }-2 v&=2 \\ u+v^{\prime }&=5 \,{\mathrm e}^{2 t}+1 \\ \end{align*}
With initial conditions
\begin{align*} u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 2 \\ v \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.019

22265

\begin{align*} w^{\prime \prime }-2 z&=0 \\ w^{\prime }+y^{\prime }-z&=2 t \\ w^{\prime }-2 y+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.026

22266

\begin{align*} w^{\prime \prime }+y+z&=-1 \\ w+y^{\prime \prime }-z&=0 \\ -w-y^{\prime }+z^{\prime \prime }&=0 \\ \end{align*}
With initial conditions
\begin{align*} w \left (0\right ) &= 0 \\ w^{\prime }\left (0\right ) &= 1 \\ z \left (0\right ) &= -1 \\ z^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.026

22267

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=8 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (1\right ) &= 2 \\ y \left (1\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.462

22268

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=8 x-2 y+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -4 \\ \end{align*}

system_of_ODEs

0.699

22269

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x+3 \\ \end{align*}
With initial conditions
\begin{align*} x \left (\pi \right ) &= 1 \\ y \left (\pi \right ) &= 2 \\ \end{align*}

system_of_ODEs

0.616

22270

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-9 x+6 y+t \\ \end{align*}

system_of_ODEs

0.531

22271

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-2 y-5 z+3 \\ z^{\prime }&=y+2 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.913

22272

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=9 x+y \\ \end{align*}

system_of_ODEs

0.352

22273

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (1\right ) &= 1 \\ x_{2} \left (1\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.526

22274

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1}+4 \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.685

22275

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1}+4 \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (1\right ) &= 0 \\ x_{2} \left (1\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.645

22276

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1}+4 \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.652

22277

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=6 x_{1}+9 \,{\mathrm e}^{-t} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.822

22278

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=4 x+3 y \\ \end{align*}

system_of_ODEs

0.360

22279

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=x_{3} \\ x_{3}^{\prime }&=6 t \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 12 \\ \end{align*}

system_of_ODEs

0.666

22280

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.203

22281

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=9 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.383

22282

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.586

22283

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

22284

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.869

22285

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= -1 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.658

22286

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.602

22287

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.136

22288

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.145

22289

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

22290

\begin{align*} y^{\prime }&=x^{2}+5 y \\ \end{align*}

[[_linear, ‘class A‘]]

1.365

22291

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.301

22292

\begin{align*} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3}&=s-3 t \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.038

22293

\begin{align*} r^{\prime }&=\sqrt {r t} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

9.996

22294

\begin{align*} x^{\prime \prime }-3 x&=\sin \left (y \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

22295

\begin{align*} 2 x +y+\left (x -3\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

1.994

22296

\begin{align*} y^{\prime \prime }+y x&=\sin \left (y^{\prime \prime }\right ) \\ \end{align*}

[NONE]

0.282

22297

\begin{align*} y^{\prime }+y&=x \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.764

22298

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.271

22299

\begin{align*} s^{\prime \prime }&=-9 s \\ s \left (0\right ) &= 9 \\ s^{\prime }\left (0\right ) &= 18 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.164

22300

\begin{align*} {y^{\prime }}^{3}&=y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

5.178