| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✗ |
7.568 |
|
| \begin{align*}
\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
25.569 |
|
| \begin{align*}
x y^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.351 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.801 |
|
| \begin{align*}
3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.797 |
|
| \begin{align*}
x \left (x^{2}+1\right ) y^{\prime }+2 y&=\left (x^{2}+1\right )^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.201 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 x -2 y-1}{2 x +3 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.818 |
|
| \begin{align*}
{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.129 |
|
| \begin{align*}
3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
5.341 |
|
| \begin{align*}
y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.428 |
|
| \begin{align*}
3 y x +y^{2}+\left (3 y x +x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
23.863 |
|
| \begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
9.085 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \ln \left (x \right ) \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.760 |
|
| \begin{align*}
\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] | ✓ | ✓ | ✓ | ✓ | 1.045 |
|
| \begin{align*}
y^{\prime } x +y x +y-1&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.751 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.356 |
|
| \begin{align*}
y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
1.164 |
|
| \begin{align*}
x^{\prime }+x \cot \left (y \right )&=\sec \left (y \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.958 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.462 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y x&=1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.979 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.755 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.790 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.378 |
|
| \begin{align*}
-5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.911 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 4.101 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
3.432 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| \begin{align*}
y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
2.023 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.708 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.163 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✗ |
0.184 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| \begin{align*}
y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.173 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✗ | 0.171 |
|
| \begin{align*}
y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.183 |
|
| \begin{align*}
y^{\prime \prime } x -\left (x +n \right ) y^{\prime }+n y&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
2.948 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
1.274 |
|
| \begin{align*}
y^{\prime \prime } x -\left (2+x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
0.920 |
|
| \begin{align*}
3 y-\left (x +3\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Laguerre] |
✓ |
✓ |
✓ |
✗ |
0.967 |
|
| \begin{align*}
y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✓ |
✗ |
✗ |
3.587 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.653 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.735 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.442 |
|
| \begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (1\right ) &= {\mathrm e}^{2} \\
y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2+3 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.466 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.844 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.150 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }-3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.843 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✓ | ✓ | ✓ | ✓ | 2.596 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
2.262 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.985 |
|
| \begin{align*}
y^{\prime \prime } x +\left (x^{2}-1\right ) y^{\prime }+x^{3} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
3.998 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime } x +x^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.961 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|