| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=y^{3}+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime }&=y^{3}-1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
23.464 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.319 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
11.197 |
|
| \begin{align*}
y^{\prime }&=y^{3}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.914 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
y^{\prime }&=x^{3} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.887 |
|
| \begin{align*}
y^{\prime }&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
1&=y^{\prime } \cos \left (y\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
3.028 |
|
| \begin{align*}
\sin \left (y \right )^{2}&=x^{\prime } \\
x \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {t}}{y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.215 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {y}{t}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.843 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{t}}{1+y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.310 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{t -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.777 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{\ln \left (y\right )} \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime }&=t \sin \left (t^{2}\right ) \\
y \left (\sqrt {\pi }\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime }&=\frac {\sin \left (x \right )}{\cos \left (y\right )+1} \\
y \left (0\right ) &= 0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✗ | ✓ | 3.258 |
|
| \begin{align*}
y^{\prime }&=\frac {3+y}{1+3 x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.731 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.753 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y+1}{x +3} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.862 |
|
| \begin{align*}
y^{\prime }&=y \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.661 |
|
| \begin{align*}
y^{\prime }&=y^{2} \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.060 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.303 |
|
| \begin{align*}
y^{\prime }+y f \left (t \right )&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.043 |
|
| \begin{align*}
y^{\prime }&=-\frac {y-2}{x -2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.592 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y+3}{3 x +3 y+1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.226 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y+2}{2 x -2 y-1} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.199 |
|
| \begin{align*}
y^{\prime }&=\left (x +y-4\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.576 |
|
| \begin{align*}
y^{\prime }&=\left (3 y+1\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }&=3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
y^{\prime }&=-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
y^{\prime }&=16 y-8 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.021 |
|
| \begin{align*}
y^{\prime }&=12+4 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime }&=y f \left (t \right ) \\
y \left (1\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.370 |
|
| \begin{align*}
-y+y^{\prime }&=10 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.325 |
|
| \begin{align*}
-y+y^{\prime }&=2 \cos \left (t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.682 |
|
| \begin{align*}
-y+y^{\prime }&=t^{2}-2 t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| \begin{align*}
-y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.632 |
|
| \begin{align*}
t y^{\prime }+y&=t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.266 |
|
| \begin{align*}
t y^{\prime }+y&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.035 |
|
| \begin{align*}
y^{\prime } x +y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| \begin{align*}
y^{\prime } x +y&={\mathrm e}^{-x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| \begin{align*}
y^{\prime }-\frac {2 t y}{t^{2}+1}&=2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.218 |
|
| \begin{align*}
y^{\prime }-\frac {4 t y}{4 t^{2}+1}&=4 t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.685 |
|
| \begin{align*}
y^{\prime }&=2 x +\frac {x y}{x^{2}-1} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.862 |
|
| \begin{align*}
y^{\prime }+\cot \left (t \right ) y&=\cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.872 |
|
| \begin{align*}
y^{\prime }-\frac {4 t y}{4 t^{2}-9}&=t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
7.391 |
|
| \begin{align*}
y^{\prime }-\frac {9 x y}{9 x^{2}+49}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
7.060 |
|
| \begin{align*}
y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| \begin{align*}
y^{\prime }+y x&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.122 |
|
| \begin{align*}
y^{\prime }-y x&=x \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.964 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x +y^{2}} \\
\end{align*} |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| \begin{align*}
y^{\prime }-x&=y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.622 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x t^{2}}{-t^{3}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
p^{\prime }&=t^{3}+\frac {p}{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.228 |
|
| \begin{align*}
v^{\prime }+v&={\mathrm e}^{-s} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| \begin{align*}
-y+y^{\prime }&=4 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.329 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| \begin{align*}
y^{\prime }+3 t^{2} y&={\mathrm e}^{-t^{3}} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.263 |
|
| \begin{align*}
2 t y+y^{\prime }&=2 t \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.131 |
|
| \begin{align*}
t y^{\prime }+y&=\cos \left (t \right ) \\
y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.083 |
|
| \begin{align*}
t y^{\prime }+y&=2 \,{\mathrm e}^{t} t \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.766 |
|
| \begin{align*}
\left (1+{\mathrm e}^{t}\right ) y^{\prime }+y \,{\mathrm e}^{t}&=t \\
y \left (0\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.193 |
|
| \begin{align*}
\left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\
y \left (0\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.445 |
|
| \begin{align*}
x^{\prime }&=x+t +1 \\
x \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| \begin{align*}
y^{\prime }&=2 y+{\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.262 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\ln \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 0.928 |
|
| \begin{align*}
y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.968 |
|
| \begin{align*}
-y+y^{\prime }&=\sin \left (2 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.723 |
|
| \begin{align*}
y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.310 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{-t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| \begin{align*}
y+y^{\prime }&=2-{\mathrm e}^{2 t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.872 |
|
| \begin{align*}
y^{\prime }-5 y&=t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.958 |
|
| \begin{align*}
3 y+y^{\prime }&=27 t^{2}+9 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.704 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| \begin{align*}
y^{\prime }+4 y&=8 \cos \left (4 t \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.799 |
|
| \begin{align*}
y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.336 |
|
| \begin{align*}
y^{\prime }-3 y&=27 t^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| \begin{align*}
-y+y^{\prime }&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
y+y^{\prime }&=4+3 \,{\mathrm e}^{t} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.056 |
|
| \begin{align*}
y+y^{\prime }&=2 \cos \left (t \right )+t \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.920 |
|
| \begin{align*}
\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| \begin{align*}
-\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= a \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
t y^{\prime }+y&=t \cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.680 |
|
| \begin{align*}
y+y^{\prime }&=t \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.090 |
|
| \begin{align*}
y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} | [[_linear, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 1.743 |
|
| \begin{align*}
y+y^{\prime }&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.786 |
|
| \begin{align*}
y+y^{\prime }&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.403 |
|
| \begin{align*}
y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| \begin{align*}
\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.652 |
|
| \begin{align*}
y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.090 |
|
| \begin{align*}
\sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
13.542 |
|