2.2.172 Problems 17101 to 17200

Table 2.357: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

17101

\begin{align*} y^{\prime }&=y^{3}+1 \\ \end{align*}

[_quadrature]

0.437

17102

\begin{align*} y^{\prime }&=y^{3}-1 \\ \end{align*}

[_quadrature]

23.464

17103

\begin{align*} y^{\prime }&=y^{3}+y \\ \end{align*}

[_quadrature]

1.319

17104

\begin{align*} y^{\prime }&=y^{3}-y^{2} \\ \end{align*}

[_quadrature]

11.197

17105

\begin{align*} y^{\prime }&=y^{3}-y \\ \end{align*}

[_quadrature]

0.914

17106

\begin{align*} y^{\prime }&=y^{3}+y \\ \end{align*}

[_quadrature]

0.707

17107

\begin{align*} y^{\prime }&=x^{3} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.887

17108

\begin{align*} y^{\prime }&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[_quadrature]

0.362

17109

\begin{align*} 1&=y^{\prime } \cos \left (y\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

3.028

17110

\begin{align*} \sin \left (y \right )^{2}&=x^{\prime } \\ x \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.400

17111

\begin{align*} y^{\prime }&=\frac {\sqrt {t}}{y} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_separable]

7.215

17112

\begin{align*} y^{\prime }&=\sqrt {\frac {y}{t}} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

12.843

17113

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{t}}{1+y} \\ y \left (0\right ) &= -2 \\ \end{align*}

[_separable]

2.310

17114

\begin{align*} y^{\prime }&={\mathrm e}^{t -y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

5.777

17115

\begin{align*} y^{\prime }&=\frac {y}{\ln \left (y\right )} \\ y \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_quadrature]

0.845

17116

\begin{align*} y^{\prime }&=t \sin \left (t^{2}\right ) \\ y \left (\sqrt {\pi }\right ) &= 0 \\ \end{align*}

[_quadrature]

0.423

17117

\begin{align*} y^{\prime }&=\frac {1}{x^{2}+1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.326

17118

\begin{align*} y^{\prime }&=\frac {\sin \left (x \right )}{\cos \left (y\right )+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

3.258

17119

\begin{align*} y^{\prime }&=\frac {3+y}{1+3 x} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.731

17120

\begin{align*} y^{\prime }&={\mathrm e}^{x -y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.434

17121

\begin{align*} y^{\prime }&={\mathrm e}^{2 x -y} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.753

17122

\begin{align*} y^{\prime }&=\frac {3 y+1}{x +3} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.862

17123

\begin{align*} y^{\prime }&=y \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.661

17124

\begin{align*} y^{\prime }&=y^{2} \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.060

17125

\begin{align*} y^{\prime }&=\sqrt {y}\, \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

4.303

17126

\begin{align*} y^{\prime }+y f \left (t \right )&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.043

17127

\begin{align*} y^{\prime }&=-\frac {y-2}{x -2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.592

17128

\begin{align*} y^{\prime }&=\frac {x +y+3}{3 x +3 y+1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.226

17129

\begin{align*} y^{\prime }&=\frac {x -y+2}{2 x -2 y-1} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.199

17130

\begin{align*} y^{\prime }&=\left (x +y-4\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

3.576

17131

\begin{align*} y^{\prime }&=\left (3 y+1\right )^{4} \\ \end{align*}

[_quadrature]

0.303

17132

\begin{align*} y^{\prime }&=3 y \\ \end{align*}

[_quadrature]

0.719

17133

\begin{align*} y^{\prime }&=-y \\ \end{align*}

[_quadrature]

0.592

17134

\begin{align*} y^{\prime }&=y^{2}-y \\ \end{align*}

[_quadrature]

0.779

17135

\begin{align*} y^{\prime }&=16 y-8 y^{2} \\ \end{align*}

[_quadrature]

1.021

17136

\begin{align*} y^{\prime }&=12+4 y-y^{2} \\ \end{align*}

[_quadrature]

0.757

17137

\begin{align*} y^{\prime }&=y f \left (t \right ) \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

2.370

17138

\begin{align*} -y+y^{\prime }&=10 \\ \end{align*}

[_quadrature]

0.327

17139

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.325

17140

\begin{align*} -y+y^{\prime }&=2 \cos \left (t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.682

17141

\begin{align*} -y+y^{\prime }&=t^{2}-2 t \\ \end{align*}

[[_linear, ‘class A‘]]

1.175

17142

\begin{align*} -y+y^{\prime }&=4 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.632

17143

\begin{align*} t y^{\prime }+y&=t^{2} \\ \end{align*}

[_linear]

2.266

17144

\begin{align*} t y^{\prime }+y&=t \\ \end{align*}

[_linear]

3.035

17145

\begin{align*} y^{\prime } x +y&=x \,{\mathrm e}^{x} \\ \end{align*}

[_linear]

1.579

17146

\begin{align*} y^{\prime } x +y&={\mathrm e}^{-x} \\ \end{align*}

[_linear]

1.832

17147

\begin{align*} y^{\prime }-\frac {2 t y}{t^{2}+1}&=2 \\ \end{align*}

[_linear]

2.218

17148

\begin{align*} y^{\prime }-\frac {4 t y}{4 t^{2}+1}&=4 t \\ \end{align*}

[_linear]

2.685

17149

\begin{align*} y^{\prime }&=2 x +\frac {x y}{x^{2}-1} \\ \end{align*}

[_linear]

5.862

17150

\begin{align*} y^{\prime }+\cot \left (t \right ) y&=\cos \left (t \right ) \\ \end{align*}

[_linear]

2.066

17151

\begin{align*} y^{\prime }-\frac {3 t y}{t^{2}-4}&=t \\ \end{align*}

[_linear]

2.872

17152

\begin{align*} y^{\prime }-\frac {4 t y}{4 t^{2}-9}&=t \\ \end{align*}

[_linear]

7.391

17153

\begin{align*} y^{\prime }-\frac {9 x y}{9 x^{2}+49}&=x \\ \end{align*}

[_linear]

7.060

17154

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

[_linear]

2.180

17155

\begin{align*} y^{\prime }+y x&=x^{3} \\ \end{align*}

[_linear]

2.122

17156

\begin{align*} y^{\prime }-y x&=x \\ \end{align*}

[_separable]

1.964

17157

\begin{align*} y^{\prime }&=\frac {1}{x +y^{2}} \\ \end{align*}

[[_1st_order, _with_exponential_symmetries]]

1.730

17158

\begin{align*} y^{\prime }-x&=y \\ \end{align*}

[[_linear, ‘class A‘]]

0.898

17159

\begin{align*} y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.622

17160

\begin{align*} x^{\prime }&=\frac {3 x t^{2}}{-t^{3}+1} \\ \end{align*}

[_separable]

1.705

17161

\begin{align*} p^{\prime }&=t^{3}+\frac {p}{t} \\ \end{align*}

[_linear]

2.228

17162

\begin{align*} v^{\prime }+v&={\mathrm e}^{-s} \\ \end{align*}

[[_linear, ‘class A‘]]

1.125

17163

\begin{align*} -y+y^{\prime }&=4 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 4 \\ \end{align*}

[[_linear, ‘class A‘]]

1.329

17164

\begin{align*} y+y^{\prime }&={\mathrm e}^{-t} \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.192

17165

\begin{align*} y^{\prime }+3 t^{2} y&={\mathrm e}^{-t^{3}} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_linear]

3.263

17166

\begin{align*} 2 t y+y^{\prime }&=2 t \\ y \left (0\right ) &= -1 \\ \end{align*}

[_separable]

2.131

17167

\begin{align*} t y^{\prime }+y&=\cos \left (t \right ) \\ y \left (\frac {\pi }{2}\right ) &= \frac {4}{\pi } \\ \end{align*}

[_linear]

2.083

17168

\begin{align*} t y^{\prime }+y&=2 \,{\mathrm e}^{t} t \\ y \left (1\right ) &= -1 \\ \end{align*}

[_linear]

1.766

17169

\begin{align*} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+y \,{\mathrm e}^{t}&=t \\ y \left (0\right ) &= -1 \\ \end{align*}

[_linear]

2.193

17170

\begin{align*} \left (t^{2}+4\right ) y^{\prime }+2 t y&=2 t \\ y \left (0\right ) &= -4 \\ \end{align*}

[_separable]

2.445

17171

\begin{align*} x^{\prime }&=x+t +1 \\ x \left (0\right ) &= 2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.078

17172

\begin{align*} y^{\prime }&=2 y+{\mathrm e}^{2 t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.262

17173

\begin{align*} y^{\prime }-\frac {y}{t}&=\ln \left (t \right ) \\ \end{align*}

[_linear]

1.885

17174

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.850

17175

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

0.928

17176

\begin{align*} y+y^{\prime }&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.968

17177

\begin{align*} -y+y^{\prime }&=\sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.723

17178

\begin{align*} y+y^{\prime }&=5 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.310

17179

\begin{align*} y+y^{\prime }&={\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

0.994

17180

\begin{align*} y+y^{\prime }&=2-{\mathrm e}^{2 t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.872

17181

\begin{align*} y^{\prime }-5 y&=t \\ \end{align*}

[[_linear, ‘class A‘]]

0.958

17182

\begin{align*} 3 y+y^{\prime }&=27 t^{2}+9 \\ \end{align*}

[[_linear, ‘class A‘]]

1.704

17183

\begin{align*} -\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.349

17184

\begin{align*} y^{\prime }+4 y&=8 \cos \left (4 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.799

17185

\begin{align*} y^{\prime }+10 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.336

17186

\begin{align*} y^{\prime }-3 y&=27 t^{2} \\ \end{align*}

[[_linear, ‘class A‘]]

1.727

17187

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.088

17188

\begin{align*} y+y^{\prime }&=4+3 \,{\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

2.056

17189

\begin{align*} y+y^{\prime }&=2 \cos \left (t \right )+t \\ \end{align*}

[[_linear, ‘class A‘]]

1.920

17190

\begin{align*} \frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.839

17191

\begin{align*} -\frac {y}{2}+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= a \\ \end{align*}

[[_linear, ‘class A‘]]

1.848

17192

\begin{align*} t y^{\prime }+y&=t \cos \left (t \right ) \\ \end{align*}

[_linear]

1.680

17193

\begin{align*} y+y^{\prime }&=t \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

2.090

17194

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.743

17195

\begin{align*} y+y^{\prime }&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.786

17196

\begin{align*} y+y^{\prime }&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

1.403

17197

\begin{align*} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.520

17198

\begin{align*} \frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\ \end{align*}

[_separable]

4.652

17199

\begin{align*} y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

0.090

17200

\begin{align*} \sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

13.542