2.2.170 Problems 16901 to 17000

Table 2.353: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16901

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.435

16902

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.580

16903

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.592

16904

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.553

16905

\begin{align*} \left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.624

16906

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

1.804

16907

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.581

16908

\begin{align*} x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.480

16909

\begin{align*} \left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.575

16910

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.470

16911

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

0.576

16912

\begin{align*} 4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.569

16913

\begin{align*} \left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _with_linear_symmetries]]

0.683

16914

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (-x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.553

16915

\begin{align*} x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.674

16916

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.428

16917

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.770

16918

\begin{align*} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.569

16919

\begin{align*} x^{2} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } x +\left (4 x^{3}-4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.894

16920

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +\left (1-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.569

16921

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.673

16922

\begin{align*} y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.858

16923

\begin{align*} y^{\prime \prime } x +4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}}&=0 \\ \end{align*}
Series expansion around \(x=-2\).

[[_2nd_order, _with_linear_symmetries]]

0.726

16924

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.419

16925

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.805

16926

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.538

16927

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.505

16928

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

1.770

16929

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (4 x -4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.715

16930

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=1-2 x \\ \end{align*}

system_of_ODEs

0.583

16931

\begin{align*} x^{\prime }&=4 x-3 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

system_of_ODEs

0.408

16932

\begin{align*} t x^{\prime }+2 x&=15 y \\ t y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.030

16933

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=5 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 7 \\ y \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.425

16934

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 9 \\ \end{align*}

system_of_ODEs

0.412

16935

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=3 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -21 \\ \end{align*}

system_of_ODEs

0.430

16936

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=5 x-2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 15 \\ \end{align*}

system_of_ODEs

0.410

16937

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=2 x \\ \end{align*}

system_of_ODEs

0.332

16938

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.359

16939

\begin{align*} x^{\prime }&=-2 y \\ y^{\prime }&=8 x \\ \end{align*}

system_of_ODEs

0.391

16940

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.553

16941

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= a_{1} \\ y \left (0\right ) &= a_{2} \\ \end{align*}

system_of_ODEs

0.447

16942

\begin{align*} x^{\prime }&=8 x+2 y-17 \\ y^{\prime }&=4 x+y-13 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.665

16943

\begin{align*} x^{\prime }&=8 x+2 y+7 \,{\mathrm e}^{2 t} \\ y^{\prime }&=4 x+y-7 \,{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.634

16944

\begin{align*} x^{\prime }&=4 x+3 y-6 \,{\mathrm e}^{3 t} \\ y^{\prime }&=x+6 y+2 \,{\mathrm e}^{3 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.812

16945

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=4 x+24 t \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.651

16946

\begin{align*} x^{\prime }&=4 x-13 y \\ y^{\prime }&=x+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 13 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.716

16947

\begin{align*} x^{\prime }&=4 x+3 y+5 \operatorname {Heaviside}\left (t -2\right ) \\ y^{\prime }&=x+6 y+17 \operatorname {Heaviside}\left (t -2\right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.110

16948

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=8 x+y \\ \end{align*}

system_of_ODEs

0.373

16949

\begin{align*} x^{\prime }&=2 x-5 y \\ y^{\prime }&=3 x-7 y \\ \end{align*}

system_of_ODEs

0.576

16950

\begin{align*} x^{\prime }&=2 x-5 y+4 \\ y^{\prime }&=3 x-7 y+5 \\ \end{align*}

system_of_ODEs

1.614

16951

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=6 x+2 y \\ \end{align*}

system_of_ODEs

0.369

16952

\begin{align*} x^{\prime }&=x y-6 y \\ y^{\prime }&=x-y-5 \\ \end{align*}

system_of_ODEs

0.029

16953

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-y \\ \end{align*}

system_of_ODEs

0.354

16954

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

16955

\begin{align*} y^{\prime } y+y^{4}&=\sin \left (x \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

3.135

16956

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.155

16957

\begin{align*} {y^{\prime }}^{2}+y&=0 \\ \end{align*}

[_quadrature]

0.620

16958

\begin{align*} t^{2} y^{\prime \prime }+t y^{\prime }+2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.993

16959

\begin{align*} x {y^{\prime \prime }}^{2}+2 y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.040

16960

\begin{align*} x^{\prime \prime }+2 \sin \left (x\right )&=\sin \left (2 t \right ) \\ \end{align*}

[NONE]

0.647

16961

\begin{align*} 2 x -1-y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.213

16962

\begin{align*} 2 x -y-y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.095

16963

\begin{align*} 2 y+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.570

16964

\begin{align*} y^{\prime }+y x&=0 \\ \end{align*}

[_separable]

1.609

16965

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.542

16966

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

16967

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.818

16968

\begin{align*} x^{\prime \prime }+2 x^{\prime }-10 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

16969

\begin{align*} x^{\prime \prime }+x&=t \cos \left (t \right )-\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.528

16970

\begin{align*} y^{\prime \prime }-12 y^{\prime }+40 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

16971

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.037

16972

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.040

16973

\begin{align*} x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.999

16974

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.026

16975

\begin{align*} y^{\prime }&=-\frac {x}{y} \\ \end{align*}

[_separable]

3.114

16976

\begin{align*} 3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.948

16977

\begin{align*} y^{\prime }&=-\frac {2 y}{x}-3 \\ \end{align*}

[_linear]

2.698

16978

\begin{align*} y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.649

16979

\begin{align*} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

7.061

16980

\begin{align*} y^{\prime }&=\left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \\ \end{align*}

[_quadrature]

0.264

16981

\begin{align*} y^{\prime }&=x \sin \left (x^{2}\right ) \\ \end{align*}

[_quadrature]

0.230

16982

\begin{align*} y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\ \end{align*}

[_quadrature]

0.288

16983

\begin{align*} y^{\prime }&=\frac {1}{x \ln \left (x \right )} \\ \end{align*}

[_quadrature]

0.267

16984

\begin{align*} y^{\prime }&=x \ln \left (x \right ) \\ \end{align*}

[_quadrature]

0.247

16985

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x} \\ \end{align*}

[_quadrature]

0.216

16986

\begin{align*} y^{\prime }&=\frac {-2 x -10}{\left (2+x \right ) \left (x -4\right )} \\ \end{align*}

[_quadrature]

0.253

16987

\begin{align*} y^{\prime }&=\frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \\ \end{align*}

[_quadrature]

0.289

16988

\begin{align*} y^{\prime }&=\frac {\sqrt {x^{2}-16}}{x} \\ \end{align*}

[_quadrature]

0.243

16989

\begin{align*} y^{\prime }&=\left (-x^{2}+4\right )^{{3}/{2}} \\ \end{align*}

[_quadrature]

0.259

16990

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-16} \\ \end{align*}

[_quadrature]

0.311

16991

\begin{align*} y^{\prime }&=\cot \left (x \right ) \cos \left (x \right ) \\ \end{align*}

[_quadrature]

0.299

16992

\begin{align*} y^{\prime }&=\sin \left (x \right )^{3} \tan \left (x \right ) \\ \end{align*}

[_quadrature]

0.356

16993

\begin{align*} 2 y+y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ \end{align*}

[_quadrature]

0.907

16994

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.672

16995

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

16996

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.954

16997

\begin{align*} y^{\prime \prime \prime }-2 y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= 3 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.072

16998

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.077

16999

\begin{align*} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_Emden, _Fowler]]

1.231

17000

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.449