| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=12 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
-4 y^{\prime }+y^{\prime \prime \prime }&=30 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.101 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&={\mathrm e}^{-x^{2}} \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\tan \left (x \right ) \\
\end{align*} |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.751 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-81 y&=\sinh \left (x \right ) \\
\end{align*} |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y&=12 x \sin \left (x^{2}\right ) \\
\end{align*} |
[[_high_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.732 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }-36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.742 |
|
| \begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.052 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.906 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.747 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.063 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.827 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.564 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-30 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }&=8 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.101 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.747 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-16 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.240 |
|
| \begin{align*}
y^{\prime \prime } x&=3 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=3 \sqrt {x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.707 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.815 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=18 \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=10 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y&=10 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=2 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=-3 x {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.468 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.302 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
3 y^{\prime \prime }+8 y^{\prime }-3 y&=123 \sin \left (3 x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y^{\prime \prime \prime }+8 y&={\mathrm e}^{-2 x} \\
\end{align*} | [[_3rd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.112 |
|
| \begin{align*}
y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.642 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.097 |
|
| \begin{align*}
-2 y+y^{\prime }&=t^{3} \\
y \left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| \begin{align*}
3 y+y^{\prime }&=\operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=t^{3} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.159 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=20 \,{\mathrm e}^{4 t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.167 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{4 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=t^{2} {\mathrm e}^{4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=7 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
y^{\prime \prime \prime }-27 y&={\mathrm e}^{-3 t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
y^{\prime \prime }\left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
t y^{\prime \prime }+y^{\prime }+t y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 9 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.122 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=27 t^{3} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.171 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+7 y&=165 \,{\mathrm e}^{4 t} \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+17 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.138 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=t^{2} {\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.121 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+17 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -12 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.139 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{t} \sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+40 y&=122 \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=24 \,{\mathrm e}^{-3 t} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.141 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.138 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.169 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.105 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.146 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.140 |
|
| \begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\
y \left (0\right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.142 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.131 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
y^{\prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.145 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.192 |
|