2.2.168 Problems 16701 to 16800

Table 2.349: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

16701

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=12 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.450

16702

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=30 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.101

16703

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.264

16704

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.343

16705

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y&=\tan \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.751

16706

\begin{align*} y^{\prime \prime \prime \prime }-81 y&=\sinh \left (x \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.473

16707

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y&=12 x \sin \left (x^{2}\right ) \\ \end{align*}

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.439

16708

\begin{align*} y^{\prime \prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.732

16709

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

16710

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.691

16711

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.888

16712

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

16713

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.742

16714

\begin{align*} y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

16715

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.052

16716

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

16717

\begin{align*} y^{\prime \prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.906

16718

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.747

16719

\begin{align*} x^{2} y^{\prime \prime }+\frac {5 y}{2}&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.286

16720

\begin{align*} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+13 y^{\prime \prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.063

16721

\begin{align*} x^{2} y^{\prime \prime }-6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.207

16722

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

16723

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.474

16724

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.827

16725

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.248

16726

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.564

16727

\begin{align*} y^{\prime \prime }+y^{\prime }-30 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

16728

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

16729

\begin{align*} 4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.727

16730

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }&=8 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.101

16731

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.839

16732

\begin{align*} 9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.747

16733

\begin{align*} y^{\prime \prime \prime \prime }-16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.047

16734

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.946

16735

\begin{align*} y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

16736

\begin{align*} y^{\prime \prime } x&=3 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.678

16737

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.756

16738

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

16739

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

16740

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

16741

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.401

16742

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=3 \sqrt {x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.707

16743

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

16744

\begin{align*} y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.815

16745

\begin{align*} x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y&=18 \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.989

16746

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=10 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

16747

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y&=10 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.069

16748

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=2 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

16749

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=-3 x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.869

16750

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.468

16751

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.302

16752

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

16753

\begin{align*} 3 y^{\prime \prime }+8 y^{\prime }-3 y&=123 \sin \left (3 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

16754

\begin{align*} y^{\prime \prime \prime }+8 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.112

16755

\begin{align*} y^{\left (6\right )}-64 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.154

16756

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.642

16757

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.585

16758

\begin{align*} y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.097

16759

\begin{align*} -2 y+y^{\prime }&=t^{3} \\ y \left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.159

16760

\begin{align*} 3 y+y^{\prime }&=\operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.316

16761

\begin{align*} y^{\prime \prime }-4 y&=t^{3} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.159

16762

\begin{align*} y^{\prime \prime }+4 y&=20 \,{\mathrm e}^{4 t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.167

16763

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.184

16764

\begin{align*} y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

16765

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{4 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.162

16766

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=t^{2} {\mathrm e}^{4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.168

16767

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=7 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.145

16768

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.221

16769

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=4 t +2 \,{\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.263

16770

\begin{align*} y^{\prime \prime \prime }-27 y&={\mathrm e}^{-3 t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _with_linear_symmetries]]

0.311

16771

\begin{align*} t y^{\prime \prime }+y^{\prime }+t y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.171

16772

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.122

16773

\begin{align*} y^{\prime \prime }+9 y&=27 t^{3} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.171

16774

\begin{align*} y^{\prime \prime }+8 y^{\prime }+7 y&=165 \,{\mathrm e}^{4 t} \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.158

16775

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.138

16776

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t^{2} {\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.121

16777

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.151

16778

\begin{align*} y^{\prime \prime }+8 y^{\prime }+17 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -12 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.139

16779

\begin{align*} y^{\prime \prime }&={\mathrm e}^{t} \sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.160

16780

\begin{align*} y^{\prime \prime }-4 y^{\prime }+40 y&=122 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.201

16781

\begin{align*} y^{\prime \prime }-9 y&=24 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.154

16782

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 t} \sin \left (3 t \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.184

16783

\begin{align*} y^{\prime \prime }+4 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.141

16784

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.147

16785

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.174

16786

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.161

16787

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.180

16788

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.138

16789

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.169

16790

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.105

16791

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.146

16792

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.140

16793

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.145

16794

\begin{align*} y^{\prime }&=\operatorname {Heaviside}\left (t -3\right ) \\ y \left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.142

16795

\begin{align*} y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.131

16796

\begin{align*} y^{\prime \prime }&=\operatorname {Heaviside}\left (t -2\right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.155

16797

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.432

16798

\begin{align*} y^{\prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_quadrature]

0.227

16799

\begin{align*} y^{\prime \prime }&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

0.145

16800

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.192