2.2.150 Problems 14901 to 15000

Table 2.313: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

14901

\begin{align*} y^{\prime }+{\mathrm e}^{-x} y&=1 \\ y \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_linear]

2.193

14902

\begin{align*} x^{\prime }+x \tanh \left (t \right )&=3 \\ \end{align*}

[_linear]

1.462

14903

\begin{align*} y^{\prime }+2 \cot \left (x \right ) y&=5 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[_linear]

1.847

14904

\begin{align*} x^{\prime }+5 x&=t \\ \end{align*}

[[_linear, ‘class A‘]]

0.928

14905

\begin{align*} x^{\prime }+\left (a +\frac {1}{t}\right ) x&=b \\ x \left (1\right ) &= x_{0} \\ \end{align*}

[_linear]

1.745

14906

\begin{align*} T^{\prime }&=-k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.368

14907

\begin{align*} 2 y x -\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime }&=0 \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5.291

14908

\begin{align*} 1+{\mathrm e}^{x} y+y x \,{\mathrm e}^{x}+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime }&=0 \\ \end{align*}

[_linear]

2.201

14909

\begin{align*} \left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right )&=0 \\ \end{align*}

[_exact]

31.636

14910

\begin{align*} {\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

[_exact]

3.723

14911

\begin{align*} {\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime }&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.979

14912

\begin{align*} V^{\prime }\left (x \right )+2 y^{\prime } y&=0 \\ \end{align*}

[_separable]

0.831

14913

\begin{align*} \left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b&=0 \\ \end{align*}

[_separable]

4.066

14914

\begin{align*} y x +y^{2}+x^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.685

14915

\begin{align*} x^{\prime }&=\frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

18.859

14916

\begin{align*} x^{\prime }&=k x-x^{2} \\ \end{align*}

[_quadrature]

3.527

14917

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

14918

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.464

14919

\begin{align*} z^{\prime \prime }-4 z^{\prime }+13 z&=0 \\ z \left (0\right ) &= 7 \\ z^{\prime }\left (0\right ) &= 42 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.484

14920

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.345

14921

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=0 \\ y \left (0\right ) &= 13 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.947

14922

\begin{align*} \theta ^{\prime \prime }+4 \theta &=0 \\ \theta \left (0\right ) &= 0 \\ \theta ^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.134

14923

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.433

14924

\begin{align*} 2 z^{\prime \prime }+7 z^{\prime }-4 z&=0 \\ z \left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

14925

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.414

14926

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.401

14927

\begin{align*} 4 x^{\prime \prime }-20 x^{\prime }+21 x&=0 \\ x \left (0\right ) &= -4 \\ x^{\prime }\left (0\right ) &= -12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.351

14928

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.333

14929

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.771

14930

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 27 \\ y^{\prime }\left (0\right ) &= -54 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.405

14931

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.611

14932

\begin{align*} x^{\prime \prime }-4 x&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

14933

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.997

14934

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

14935

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.396

14936

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.419

14937

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\sin \left (\alpha t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

14938

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\sin \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.103

14939

\begin{align*} x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

14940

\begin{align*} x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

14941

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&={\mathrm e}^{-2 t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

14942

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.405

14943

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

14944

\begin{align*} x^{\prime \prime }+4 x&=289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.676

14945

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\cos \left (\alpha t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.833

14946

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\cos \left (\omega t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.352

14947

\begin{align*} x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x&={\mathrm e}^{-t} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.140

14948

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y&=\sin \left (x \right ) \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.136

14949

\begin{align*} x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x&=\sin \left (t \right ) \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.165

14950

\begin{align*} x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x&={\mathrm e}^{t} \\ \end{align*}

[[_high_order, _with_linear_symmetries]]

0.129

14951

\begin{align*} t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.113

14952

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.125

14953

\begin{align*} \left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.247

14954

\begin{align*} \left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.127

14955

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[_Hermite]

0.177

14956

\begin{align*} \tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.130

14957

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

14958

\begin{align*} x^{\prime \prime }-x&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.383

14959

\begin{align*} 4 y+y^{\prime \prime }&=\cot \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.743

14960

\begin{align*} t^{2} x^{\prime \prime }-2 x&=t^{3} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.630

14961

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.759

14962

\begin{align*} \left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4}&=\left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

14963

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.411

14964

\begin{align*} 4 x^{2} y^{\prime \prime }+y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.369

14965

\begin{align*} t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x&=0 \\ x \left (1\right ) &= 2 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

2.006

14966

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\ x \left (1\right ) &= 1 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.102

14967

\begin{align*} x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z&=0 \\ z \left (1\right ) &= 0 \\ z^{\prime }\left (1\right ) &= 5 \\ \end{align*}

[[_Emden, _Fowler]]

2.335

14968

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.446

14969

\begin{align*} 4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x&=0 \\ x \left (1\right ) &= 2 \\ x^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

1.972

14970

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y&=0 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_Emden, _Fowler]]

1.678

14971

\begin{align*} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z&=0 \\ z \left (1\right ) &= 2 \\ z^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.468

14972

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x&=0 \\ x \left (1\right ) &= -1 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_Emden, _Fowler]]

2.430

14973

\begin{align*} a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.190

14974

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Gegenbauer]

0.575

14975

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Hermite]

0.340

14976

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.416

14977

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.788

14978

\begin{align*} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.426

14979

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.394

14980

\begin{align*} -y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

3.122

14981

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.540

14982

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

2.658

14983

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.759

14984

\begin{align*} x^{\prime }&=4 x-y \\ y^{\prime }&=2 x+y+t^{2} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.725

14985

\begin{align*} x^{\prime }&=x-4 y+\cos \left (2 t \right ) \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.996

14986

\begin{align*} x^{\prime }&=2 x+2 y \\ y^{\prime }&=6 x+3 y+{\mathrm e}^{t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.707

14987

\begin{align*} x^{\prime }&=5 x-4 y+{\mathrm e}^{3 t} \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.644

14988

\begin{align*} x^{\prime }&=2 x+5 y \\ y^{\prime }&=-2 x+\cos \left (3 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

1.486

14989

\begin{align*} x^{\prime }&=x+y+{\mathrm e}^{-t} \\ y^{\prime }&=4 x-2 y+{\mathrm e}^{2 t} \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.802

14990

\begin{align*} x^{\prime }&=8 x+14 y \\ y^{\prime }&=7 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.454

14991

\(\left [\begin {array}{cc} 2 & 2 \\ 0 & -4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.258

14992

\(\left [\begin {array}{cc} 7 & -2 \\ 26 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.347

14993

\(\left [\begin {array}{cc} 9 & 2 \\ 2 & 6 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.273

14994

\(\left [\begin {array}{cc} 7 & 1 \\ -4 & 11 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.151

14995

\(\left [\begin {array}{cc} 2 & -3 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.270

14996

\(\left [\begin {array}{cc} 6 & 0 \\ 0 & -13 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.259

14997

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.344

14998

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.173

14999

\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.300

15000

\begin{align*} x^{\prime }&=8 x+14 y \\ y^{\prime }&=7 x+y \\ \end{align*}

system_of_ODEs

0.392