| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=-5 x+3 y \\
y^{\prime }&=2 x-10 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=4 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
x^{\prime }&=5 x-4 y \\
y^{\prime }&=x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
x^{\prime }&=9 y \\
y^{\prime }&=-x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
x^{\prime }&=2 x+y \\
y^{\prime }&=-x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=-2 x+4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
x^{\prime }&=3 x-y+1 \\
y^{\prime }&=x+y+2 \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 1 \\
y \left (0\right ) &= 2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
x^{\prime }&=-5 x+3 y+{\mathrm e}^{-t} \\
y^{\prime }&=2 x-10 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x+\cos \left (t w \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y+3 \\
y^{\prime }&=7 x+5 y+2 t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.921 |
|
| \begin{align*}
x^{\prime }&=x-3 y \\
y^{\prime }&=3 x+7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime }+y&=x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.559 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| \begin{align*}
y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.151 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.700 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.049 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 y^{\prime } x -8 y&=0 \\
\end{align*} |
[[_3rd_order, _fully, _exact, _linear]] |
✓ |
✓ |
✓ |
✓ |
0.117 |
|
| \begin{align*}
2 y+y^{\prime }&=6 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{-2 x} x \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=-8 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.308 |
|
| \begin{align*}
y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| \begin{align*}
y^{\prime }+y&=2 x \,{\mathrm e}^{-x} \\
y \left (-1\right ) &= {\mathrm e}+3 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.257 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✗ |
✗ |
✗ |
2.602 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✗ |
✗ |
✗ |
1.705 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.981 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 2 \\
y^{\prime \prime }\left (2\right ) &= 6 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime }&=x^{2} \sin \left (y\right ) \\
y \left (1\right ) &= -2 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✗ | 5.120 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x -2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.109 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.717 |
|
| \begin{align*}
3 x +2 y+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.941 |
|
| \begin{align*}
y^{2}+3+\left (2 y x -4\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.134 |
|
| \begin{align*}
2 y x +1+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.592 |
|
| \begin{align*}
3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✗ |
✗ |
✗ |
✗ |
6.420 |
|
| \begin{align*}
6 y x +2 y^{2}-5+\left (3 x^{2}+4 y x -6\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
2.350 |
|
| \begin{align*}
\sec \left (x \right )^{2} y+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
14.525 |
|
| \begin{align*}
\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| \begin{align*}
\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.269 |
|
| \begin{align*}
\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
4.742 |
|
| \begin{align*}
2 y x -3+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
1.505 |
|
| \begin{align*}
3 y^{2} x^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime }&=0 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
4.967 |
|
| \begin{align*}
2 \sin \left (x \right ) \cos \left (x \right ) y+\sin \left (x \right ) y^{2}+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime }&=0 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
25.110 |
|
| \begin{align*}
{\mathrm e}^{x} y+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 y x \right ) y^{\prime }&=0 \\
y \left (0\right ) &= 6 \\
\end{align*} | [_exact, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 4.548 |
|
| \begin{align*}
\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}}&=0 \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
3.707 |
|
| \begin{align*}
\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}}&=0 \\
y \left (1\right ) &= 8 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✗ |
✗ |
11.149 |
|
| \begin{align*}
4 x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.900 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.719 |
|
| \begin{align*}
y+x \left (y^{2}+x^{2}\right )^{2}+\left (y \left (y^{2}+x^{2}\right )^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
2.988 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+4 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.744 |
|
| \begin{align*}
y x +2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.213 |
|
| \begin{align*}
2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.829 |
|
| \begin{align*}
\csc \left (y\right )+\sec \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.235 |
|
| \begin{align*}
\tan \left (\theta \right )+2 r \theta ^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.107 |
|
| \begin{align*}
\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.682 |
|
| \begin{align*}
\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.996 |
|
| \begin{align*}
x +y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.732 |
|
| \begin{align*}
2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.475 |
|
| \begin{align*}
v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.390 |
|
| \begin{align*}
\tan \left (\frac {y}{x}\right ) x +y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.757 |
|
| \begin{align*}
\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.029 |
|
| \begin{align*}
x^{3}+y^{2} \sqrt {y^{2}+x^{2}}-x y \sqrt {y^{2}+x^{2}}\, y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✗ | 9.530 |
|
| \begin{align*}
\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
15.096 |
|
| \begin{align*}
y+2+y \left (x +4\right ) y^{\prime }&=0 \\
y \left (-3\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.819 |
|
| \begin{align*}
8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime }&=0 \\
y \left (\frac {\pi }{12}\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.853 |
|
| \begin{align*}
\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| \begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
y \left (2\right ) &= 6 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.420 |
|
| \begin{align*}
\left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \\
y \left (1\right ) &= 4 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.483 |
|
| \begin{align*}
3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= -6 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
8.901 |
|
| \begin{align*}
x +2 y+\left (2 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.839 |
|
| \begin{align*}
3 x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.513 |
|
| \begin{align*}
x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.952 |
|
| \begin{align*}
2 x^{2}+2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.496 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{x}&=6 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| \begin{align*}
x^{4} y^{\prime }+2 x^{3} y&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| \begin{align*}
y^{\prime }+3 y&=3 x^{2} {\mathrm e}^{-3 x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.325 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| \begin{align*}
x^{\prime }+\frac {x}{t^{2}}&=\frac {1}{t^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.780 |
|
| \begin{align*}
\left (u^{2}+1\right ) v^{\prime }+4 u v&=3 u \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.103 |
|
| \begin{align*}
y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1}&=x -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.706 |
|
| \begin{align*}
\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y&=x -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.842 |
|
| \begin{align*}
y^{\prime } x +y x +y-1&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| \begin{align*}
y+\left (x y^{2}+x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
1.566 |
|
| \begin{align*}
r^{\prime }+r \tan \left (t \right )&=\cos \left (t \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.730 |
|
| \begin{align*}
\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.365 |
|
| \begin{align*}
\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.301 |
|
| \begin{align*}
y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.293 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {y^{2}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
y^{\prime } x +y&=-2 x^{6} y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.638 |
|
| \begin{align*}
x^{\prime }+\frac {\left (t +1\right ) x}{2 t}&=\frac {t +1}{t x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.391 |
|
| \begin{align*}
y^{\prime } x -2 y&=2 x^{4} \\
y \left (2\right ) &= 8 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.642 |
|
| \begin{align*}
y^{\prime }+3 x^{2} y&=x^{2} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.923 |
|