2.2.143 Problems 14201 to 14300

Table 2.299: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

14201

\begin{align*} x^{\prime }&=x \left (1-\frac {x}{4}\right ) \\ \end{align*}

[_quadrature]

1.746

14202

\begin{align*} x^{\prime }&=t^{2}+x^{2} \\ \end{align*}

[[_Riccati, _special]]

39.881

14203

\begin{align*} x^{\prime }&=t \cos \left (t^{2}\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.366

14204

\begin{align*} x^{\prime }&=\frac {t +1}{\sqrt {t}} \\ x \left (1\right ) &= 4 \\ \end{align*}

[_quadrature]

0.339

14205

\begin{align*} x^{\prime \prime }&=-3 \sqrt {t} \\ x \left (1\right ) &= 4 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.294

14206

\begin{align*} x^{\prime }&=t \,{\mathrm e}^{-2 t} \\ \end{align*}

[_quadrature]

0.214

14207

\begin{align*} x^{\prime }&=\frac {1}{t \ln \left (t \right )} \\ \end{align*}

[_quadrature]

0.210

14208

\begin{align*} \sqrt {t}\, x^{\prime }&=\cos \left (\sqrt {t}\right ) \\ \end{align*}

[_quadrature]

0.266

14209

\begin{align*} x^{\prime }&=\frac {{\mathrm e}^{-t}}{\sqrt {t}} \\ x \left (1\right ) &= 0 \\ \end{align*}

[_quadrature]

0.378

14210

\begin{align*} x^{\prime }+t x^{\prime \prime }&=1 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.403

14211

\begin{align*} x^{\prime }&=\sqrt {x} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

4.405

14212

\begin{align*} x^{\prime }&={\mathrm e}^{-2 x} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

3.033

14213

\begin{align*} y^{\prime }&=1+y^{2} \\ \end{align*}

[_quadrature]

2.813

14214

\begin{align*} u^{\prime }&=\frac {1}{5-2 u} \\ \end{align*}

[_quadrature]

0.552

14215

\begin{align*} x^{\prime }&=a x+b \\ \end{align*}

[_quadrature]

0.426

14216

\begin{align*} Q^{\prime }&=\frac {Q}{4+Q^{2}} \\ \end{align*}

[_quadrature]

0.363

14217

\begin{align*} x^{\prime }&={\mathrm e}^{x^{2}} \\ \end{align*}

[_quadrature]

2.174

14218

\begin{align*} y^{\prime }&=r \left (a -y\right ) \\ \end{align*}

[_quadrature]

0.414

14219

\begin{align*} x^{\prime }&=\frac {2 x}{t +1} \\ \end{align*}

[_separable]

5.404

14220

\begin{align*} \theta ^{\prime }&=t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \\ \end{align*}

[_separable]

4.402

14221

\begin{align*} \left (2 u+1\right ) u^{\prime }-t -1&=0 \\ \end{align*}

[_separable]

8.071

14222

\begin{align*} R^{\prime }&=\left (t +1\right ) \left (1+R^{2}\right ) \\ \end{align*}

[_separable]

7.244

14223

\begin{align*} y^{\prime }+y+\frac {1}{y}&=0 \\ \end{align*}

[_quadrature]

1.817

14224

\begin{align*} \left (t +1\right ) x^{\prime }+x^{2}&=0 \\ \end{align*}

[_separable]

5.314

14225

\begin{align*} y^{\prime }&=\frac {1}{2 y+1} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.441

14226

\begin{align*} x^{\prime }&=\left (4 t -x\right )^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.206

14227

\begin{align*} x^{\prime }&=2 t x^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

[_separable]

9.395

14228

\begin{align*} x^{\prime }&=t^{2} {\mathrm e}^{-x} \\ x \left (0\right ) &= \ln \left (2\right ) \\ \end{align*}

[_separable]

6.002

14229

\begin{align*} x^{\prime }&=x \left (4+x\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

2.066

14230

\begin{align*} x^{\prime }&={\mathrm e}^{t +x} \\ x \left (0\right ) &= 0 \\ \end{align*}

[_separable]

5.367

14231

\begin{align*} T^{\prime }&=2 a t \left (T^{2}-a^{2}\right ) \\ T \left (0\right ) &= 0 \\ \end{align*}

[_separable]

9.231

14232

\begin{align*} y^{\prime }&=t^{2} \tan \left (y\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

6.517

14233

\begin{align*} x^{\prime }&=\frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \\ x \left (0\right ) &= {\mathrm e} \\ \end{align*}

[_separable]

5.700

14234

\begin{align*} y^{\prime }&=\frac {2 t y^{2}}{t^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

7.325

14235

\begin{align*} x^{\prime }&=\frac {t^{2}}{1-x^{2}} \\ x \left (1\right ) &= 1 \\ \end{align*}

[_separable]

6.632

14236

\begin{align*} x^{\prime }&=6 t \left (x-1\right )^{{2}/{3}} \\ \end{align*}

[_separable]

7.812

14237

\begin{align*} x^{\prime }&=\frac {4 t^{2}+3 x^{2}}{2 t x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13.330

14238

\begin{align*} x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t}&={\mathrm e}^{-t} \\ x \left (0\right ) &= 3 \\ \end{align*}

[[_linear, ‘class A‘]]

4.887

14239

\begin{align*} \frac {x^{\prime }+t x^{\prime \prime }}{t}&=-2 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.873

14240

\begin{align*} y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.387

14241

\begin{align*} y^{\prime }&=-y^{2} {\mathrm e}^{-t^{2}} \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

7.598

14242

\begin{align*} x^{\prime }&=2 t^{3} x-6 \\ \end{align*}

[_linear]

3.925

14243

\begin{align*} \cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right )&=0 \\ \end{align*}

[_separable]

4.954

14244

\begin{align*} x^{\prime }&=t -x^{2} \\ \end{align*}

[[_Riccati, _special]]

4.858

14245

\begin{align*} 7 t^{2} x^{\prime }&=3 x-2 t \\ \end{align*}

[_linear]

3.911

14246

\begin{align*} x x^{\prime }&=1-t x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.812

14247

\begin{align*} {x^{\prime }}^{2}+t x&=\sqrt {t +1} \\ \end{align*}

[‘y=_G(x,y’)‘]

52.319

14248

\begin{align*} x^{\prime }&=-\frac {2 x}{t}+t \\ \end{align*}

[_linear]

1.875

14249

\begin{align*} y+y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_linear, ‘class A‘]]

0.935

14250

\begin{align*} x^{\prime }+2 t x&={\mathrm e}^{-t^{2}} \\ \end{align*}

[_linear]

1.895

14251

\begin{align*} t x^{\prime }&=-x+t^{2} \\ \end{align*}

[_linear]

1.655

14252

\begin{align*} \theta ^{\prime }&=-a \theta +{\mathrm e}^{b t} \\ \end{align*}

[[_linear, ‘class A‘]]

1.179

14253

\begin{align*} \left (t^{2}+1\right ) x^{\prime }&=-3 t x+6 t \\ \end{align*}

[_separable]

1.828

14254

\begin{align*} x^{\prime }+\frac {5 x}{t}&=t +1 \\ x \left (1\right ) &= 1 \\ \end{align*}

[_linear]

1.724

14255

\begin{align*} x^{\prime }&=\left (a +\frac {b}{t}\right ) x \\ x \left (1\right ) &= 1 \\ \end{align*}

[_separable]

1.300

14256

\begin{align*} R^{\prime }+\frac {R}{t}&=\frac {2}{t^{2}+1} \\ R \left (1\right ) &= 3 \ln \left (2\right ) \\ \end{align*}

[_linear]

1.522

14257

\begin{align*} N^{\prime }&=N-9 \,{\mathrm e}^{-t} \\ \end{align*}

[[_linear, ‘class A‘]]

0.999

14258

\begin{align*} \cos \left (\theta \right ) v^{\prime }+v&=3 \\ \end{align*}

[_separable]

2.390

14259

\begin{align*} R^{\prime }&=\frac {R}{t}+t \,{\mathrm e}^{-t} \\ R \left (1\right ) &= 1 \\ \end{align*}

[_linear]

1.888

14260

\begin{align*} y^{\prime }+a y&=\sqrt {t +1} \\ \end{align*}

[[_linear, ‘class A‘]]

1.609

14261

\begin{align*} x^{\prime }&=2 t x \\ \end{align*}

[_separable]

1.474

14262

\begin{align*} x^{\prime }+\frac {{\mathrm e}^{-t} x}{t}&=t \\ x \left (1\right ) &= 0 \\ \end{align*}

[_linear]

2.151

14263

\begin{align*} x^{\prime \prime }+x^{\prime }&=3 t \\ \end{align*}

[[_2nd_order, _missing_y]]

0.760

14264

\begin{align*} x^{\prime }&=\left (t +x\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.063

14265

\begin{align*} x^{\prime }&=a x+b \\ \end{align*}

[_quadrature]

0.422

14266

\begin{align*} x^{\prime }+p \left (t \right ) x&=0 \\ \end{align*}

[_separable]

1.579

14267

\begin{align*} x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

70.299

14268

\begin{align*} x^{\prime }&=x \left (1+{\mathrm e}^{t} x\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.138

14269

\begin{align*} x^{\prime }&=-\frac {x}{t}+\frac {1}{t x^{2}} \\ \end{align*}

[_separable]

2.976

14270

\begin{align*} t^{2} y^{\prime }+2 t y-y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.164

14271

\begin{align*} x^{\prime }&=a x+b x^{3} \\ \end{align*}

[_quadrature]

5.280

14272

\begin{align*} w^{\prime }&=t w+t^{3} w^{3} \\ \end{align*}

[_Bernoulli]

1.522

14273

\begin{align*} x^{3}+3 t x^{2} x^{\prime }&=0 \\ \end{align*}

[_separable]

0.082

14274

\begin{align*} t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime }&=0 \\ \end{align*}

[_exact]

1.835

14275

\begin{align*} x^{\prime }&=-\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \\ \end{align*}

[NONE]

26.258

14276

\begin{align*} x+3 t x^{2} x^{\prime }&=0 \\ \end{align*}

[_separable]

0.246

14277

\begin{align*} x^{2}-t^{2} x^{\prime }&=0 \\ \end{align*}

[_separable]

2.219

14278

\begin{align*} t \cot \left (x\right ) x^{\prime }&=-2 \\ \end{align*}

[_separable]

2.551

14279

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

14280

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.765

14281

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.407

14282

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.306

14283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

14284

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.831

14285

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

14286

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.277

14287

\begin{align*} x^{\prime \prime }+x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.463

14288

\begin{align*} x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.431

14289

\begin{align*} x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.264

14290

\begin{align*} x^{\prime \prime }-12 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.530

14291

\begin{align*} 2 x^{\prime \prime }+3 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.450

14292

\begin{align*} \frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.307

14293

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.431

14294

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{8}+x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.454

14295

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=3 t^{3}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

14296

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=3 \cos \left (t \right )-2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

14297

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

14298

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=t^{2} {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

14299

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (7 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

14300

\begin{align*} x^{\prime \prime }+x^{\prime }+x&={\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.973