2.2.130 Problems 12901 to 13000

Table 2.273: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

12901

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.151

12902

\begin{align*} x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.808

12903

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.523

12904

\begin{align*} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.148

12905

\begin{align*} 2 y+a y^{3}+9 x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.334

12906

\begin{align*} 24+12 y x +x^{3} \left (-y^{3}+y^{\prime } y+y^{\prime \prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.190

12907

\begin{align*} x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.569

12908

\begin{align*} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 y x \right ) y^{\prime }+b +x y \left (a +3 y x -2 y^{2} x^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.212

12909

\begin{align*} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y^{\prime } y+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{-1+k}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b&=0 \\ \end{align*}

[NONE]

0.397

12910

\begin{align*} x^{4} y^{\prime \prime }+a^{2} y^{n}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.139

12911

\begin{align*} x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.575

12912

\begin{align*} x^{4} y^{\prime \prime }-x^{2} y^{\prime } \left (x +y^{\prime }\right )+4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.609

12913

\begin{align*} \left (-y+y^{\prime } x \right )^{3}+x^{4} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.063

12914

\begin{align*} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.145

12915

\begin{align*} \left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right )&=0 \\ \end{align*}

[NONE]

35.336

12916

\begin{align*} y y^{\prime \prime }-a&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.674

12917

\begin{align*} y y^{\prime \prime }-a x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.124

12918

\begin{align*} y y^{\prime \prime }-a \,x^{2}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.129

12919

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-a&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.623

12920

\begin{align*} y y^{\prime \prime }+y^{2}-a x -b&=0 \\ \end{align*}

[NONE]

0.161

12921

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.909

12922

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.157

12923

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.480

12924

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right )&=0 \\ \end{align*}

[NONE]

0.271

12925

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-\ln \left (y\right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.253

12926

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-y f^{\prime }\left (x \right )-y^{3}&=0 \\ \end{align*}

[NONE]

0.266

12927

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4}&=0 \\ \end{align*}

[NONE]

0.297

12928

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.426

12929

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+y^{3} b&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

16.086

12930

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 b^{2} y^{3}+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

26.522

12931

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

89.889

12932

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_xy]]

3.342

12933

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.530

12934

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+f \left (x \right ) y^{2}\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.341

12935

\begin{align*} y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y^{\prime } y-y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

5.793

12936

\begin{align*} y y^{\prime \prime }-a {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.526

12937

\begin{align*} y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.378

12938

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+y^{3} b&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.590

12939

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{-a +1}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

313.927

12940

\begin{align*} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

17.754

12941

\begin{align*} y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a}&=0 \\ \end{align*}

[NONE]

0.457

12942

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.631

12943

\begin{align*} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.711

12944

\begin{align*} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.310

12945

\begin{align*} \left (x -y\right ) y^{\prime \prime }-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.380

12946

\begin{align*} \left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.207

12947

\begin{align*} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.898

12948

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+a&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.525

12949

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a&=0 \\ \end{align*}

[NONE]

0.236

12950

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.770

12951

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.094

12952

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (x +2 y\right )&=0 \\ \end{align*}

[NONE]

0.179

12953

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.317

12954

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3}&=0 \\ \end{align*}

[NONE]

0.194

12955

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2}&=0 \\ \end{align*}

[NONE]

0.187

12956

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.271

12957

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4}&=0 \\ \end{align*}

[[_Painleve, ‘4th‘]]

0.226

12958

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.529

12959

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

2.968

12960

\begin{align*} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.224

12961

\begin{align*} 2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+y^{2} \left (1+a y^{3}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.334

12962

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.776

12963

\begin{align*} 2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.869

12964

\begin{align*} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c&=0 \\ \end{align*}

[NONE]

0.315

12965

\begin{align*} 3 y y^{\prime \prime }-5 {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.932

12966

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.913

12967

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.655

12968

\begin{align*} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.214

12969

\begin{align*} 4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.565

12970

\begin{align*} 12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.934

12971

\begin{align*} n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.624

12972

\begin{align*} a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.405

12973

\begin{align*} a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.543

12974

\begin{align*} \left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.911

12975

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.989

12976

\begin{align*} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.445

12977

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+y^{\prime } y+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right )&=0 \\ \end{align*}

[[_Painleve, ‘3rd‘]]

0.240

12978

\begin{align*} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+y^{3} b x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.191

12979

\begin{align*} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.125

12980

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.309

12981

\begin{align*} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.425

12982

\begin{align*} 4 y^{\prime } y-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.852

12983

\begin{align*} x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.583

12984

\begin{align*} x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.761

12985

\begin{align*} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y^{\prime } y&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.521

12986

\begin{align*} x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.710

12987

\begin{align*} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.648

12988

\begin{align*} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.644

12989

\begin{align*} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

12990

\begin{align*} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.450

12991

\begin{align*} x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (2+x \right ) y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.122

12992

\begin{align*} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.653

12993

\begin{align*} y^{2} y^{\prime \prime }-a&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

60.328

12994

\begin{align*} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.228

12995

\begin{align*} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.169

12996

\begin{align*} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.125

12997

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.868

12998

\begin{align*} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y^{\prime } y\right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.443

12999

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.516

13000

\begin{align*} \left (y^{2}+x^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.488