| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=-\left (-\frac {\ln \left (y\right )}{x}+\frac {\ln \left (y\right )}{x \ln \left (x \right )}-\textit {\_F1} \left (x \right )\right ) y \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
10.115 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y^{2}+y^{{3}/{2}}+\sqrt {y}\, x^{2}-2 y^{{3}/{2}} x +y^{{5}/{2}}+x^{3}-3 x^{2} y+3 x y^{2}-y^{3}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
✓ |
✓ |
✗ |
10.711 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{-2 \left (x -y\right ) \left (x +y\right )}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
9.682 |
|
| \begin{align*}
y^{\prime }&=-\frac {\left (-\frac {\ln \left (y\right )^{2}}{2 x}-\textit {\_F1} \left (x \right )\right ) y}{\ln \left (y\right )} \\
\end{align*} |
[NONE] |
✓ |
✓ |
✓ |
✓ |
6.467 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2 \left (x -y\right )^{2} \left (x +y\right )^{2}}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
11.119 |
|
| \begin{align*}
y^{\prime }&=\frac {-8 x^{2} y^{3}+16 x y^{2}+16 x y^{3}-8+12 y x -6 y^{2} x^{2}+x^{3} y^{3}}{16 \left (-2+y x -2 y\right ) x} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
17.556 |
|
| \begin{align*}
y^{\prime }&=-\frac {x \left ({\mathrm e}^{-3 x^{2}} x^{6}-6 \,{\mathrm e}^{-2 x^{2}} x^{4} y-2 \,{\mathrm e}^{-2 x^{2}} x^{4}+12 x^{2} {\mathrm e}^{-x^{2}} y^{2}+8 x^{2} {\mathrm e}^{-x^{2}} y+8 x^{2} {\mathrm e}^{-x^{2}}-8 y^{3}-8 y^{2}-8 \,{\mathrm e}^{-x^{2}}-8\right )}{8} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
9.009 |
|
| \begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
14.612 |
|
| \begin{align*}
y^{\prime }&=-\frac {16 x y^{3}-8 y^{3}-8 y+8 x y^{2}-2 x^{2} y^{3}-8+12 y x -6 y^{2} x^{2}+x^{3} y^{3}}{32 y x} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
12.174 |
|
| \begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+{\mathrm e}^{-\frac {y}{x}} x +x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
12.074 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 x^{2} y-2 x^{3}-2 x -x y^{2}-y+x^{3} y^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x \left (x^{2}+y x +1\right )} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
10.965 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (27 y^{3}+27 \,{\mathrm e}^{3 x^{2}} y+18 \,{\mathrm e}^{3 x^{2}} y^{2}+3 y^{3} {\mathrm e}^{3 x^{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y+9 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y^{2}+{\mathrm e}^{\frac {9 x^{2}}{2}} y^{3}\right ) {\mathrm e}^{3 x^{2}} x \,{\mathrm e}^{-\frac {9 x^{2}}{2}}}{243 y} \\
\end{align*} |
[[_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
19.479 |
|
| \begin{align*}
y^{\prime }&=-\frac {-x^{2}-y x -x^{3}-x y^{2}+2 y \ln \left (x \right ) x^{2}-x^{3} \ln \left (x \right )^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x^{2}} \\
\end{align*} |
[_Abel] |
✓ |
✓ |
✓ |
✗ |
8.328 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{4}-y x -\frac {x^{4}}{8}+\frac {x^{3}}{8}+\frac {x^{2}}{4}+y^{3}-\frac {3 y^{2} x^{2}}{4}-\frac {3 x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 x^{3} y}{4}-\frac {x^{6}}{64}-\frac {3 x^{5}}{32} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.226 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {7 x^{2} y}{2}-2 y x +\frac {13 x^{4}}{16}-\frac {3 x^{3}}{2}+x^{2}+y^{3}+\frac {3 y^{2} x^{2}}{4}-3 x y^{2}+\frac {3 x^{4} y}{16}-\frac {3 x^{3} y}{2}+\frac {x^{6}}{64}-\frac {3 x^{5}}{16} \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _Abel] | ✓ | ✓ | ✓ | ✓ | 12.688 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{4}+1+y^{2}+\frac {7 x^{2} y}{16}-\frac {y x}{2}+\frac {5 x^{4}}{128}-\frac {5 x^{3}}{64}+\frac {x^{2}}{16}+y^{3}+\frac {3 y^{2} x^{2}}{8}-\frac {3 x y^{2}}{4}+\frac {3 x^{4} y}{64}-\frac {3 x^{3} y}{16}+\frac {x^{6}}{512}-\frac {3 x^{5}}{256} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.829 |
|
| \begin{align*}
y^{\prime }&=\frac {-2 y-2 \ln \left (2 x +1\right )-2+2 x y^{3}+y^{3}+6 y^{2} \ln \left (2 x +1\right ) x +3 y^{2} \ln \left (2 x +1\right )+6 y \ln \left (2 x +1\right )^{2} x +3 y \ln \left (2 x +1\right )^{2}+2 \ln \left (2 x +1\right )^{3} x +\ln \left (2 x +1\right )^{3}}{\left (2 x +1\right ) \left (y+\ln \left (2 x +1\right )+1\right )} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
32.639 |
|
| \begin{align*}
y^{\prime }&=\frac {-x^{2}+x +1+y^{2}+5 x^{2} y-2 y x +4 x^{4}-3 x^{3}+y^{3}+3 y^{2} x^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
9.148 |
|
| \begin{align*}
y^{\prime }&=\frac {-32 y x +16 x^{3}+16 x^{2}-32 x -64 y^{3}+48 y^{2} x^{2}+96 x y^{2}-12 x^{4} y-48 x^{3} y-48 x^{2} y+x^{6}+6 x^{5}+12 x^{4}}{-64 y+16 x^{2}+32 x -64} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
9.725 |
|
| \begin{align*}
y^{\prime }&=\frac {x y \ln \left (x \right )+\ln \left (x \right ) x^{2}-2 y x -x^{2}-y^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x \left (-y+x \ln \left (x \right )-x \right )} \\
\end{align*} |
[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
8.978 |
|
| \begin{align*}
y^{\prime }&=\frac {-32 y x -72 x^{3}+32 x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}-192 x y^{2}+12 x^{4} y-96 x^{3} y+192 x^{2} y+x^{6}-12 x^{5}+48 x^{4}}{64 y+16 x^{2}-64 x +64} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
9.956 |
|
| \begin{align*}
y^{\prime }&=-\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}}{-y^{2}-2 y x -x^{2}+{\mathrm e}^{\frac {2 \left (x -y\right )^{3} \left (x +y\right )^{3}}{-y^{2}+x^{2}-1}}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
17.960 |
|
| \begin{align*}
y^{\prime }&=\frac {-128 y x -24 x^{3}+32 x^{2}-128 x +512 y^{3}+192 y^{2} x^{2}-384 x y^{2}+24 x^{4} y-96 x^{3} y+96 x^{2} y+x^{6}-6 x^{5}+12 x^{4}}{512 y+64 x^{2}-128 x +512} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
10.078 |
|
| \begin{align*}
y^{\prime }&=\frac {-32 a x y-8 a^{2} x^{3}-16 b \,x^{2} a -32 a x +64 y^{3}+48 a \,x^{2} y^{2}+96 b x y^{2}+12 a^{2} x^{4} y+48 y a \,x^{3} b +48 b^{2} x^{2} y+a^{3} x^{6}+6 a^{2} x^{5} b +12 a \,x^{4} b^{2}+8 b^{3} x^{3}}{64 y+16 a \,x^{2}+32 b x +64} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
9.901 |
|
| \begin{align*}
y^{\prime }&=\frac {-32 y x -8 x^{3}-16 a \,x^{2}-32 x +64 y^{3}+48 y^{2} x^{2}+96 a x y^{2}+12 x^{4} y+48 y a \,x^{3}+48 y a^{2} x^{2}+x^{6}+6 x^{5} a +12 a^{2} x^{4}+8 a^{3} x^{3}}{64 y+16 x^{2}+32 a x +64} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
9.295 |
|
| \begin{align*}
y^{\prime }&=\frac {\left ({\mathrm e}^{-3 x^{2}} x^{6}-6 \,{\mathrm e}^{-2 x^{2}} x^{4} y-4 \,{\mathrm e}^{-2 x^{2}} x^{4}+12 x^{2} {\mathrm e}^{-x^{2}} y^{2}+8 x^{2} {\mathrm e}^{-x^{2}} y+4 x^{2} {\mathrm e}^{-2 x^{2}}+8 x^{2} {\mathrm e}^{-x^{2}}-8 y^{3}-8 y \,{\mathrm e}^{-x^{2}}-8 \,{\mathrm e}^{-x^{2}}\right ) x}{-8 y+4 x^{2} {\mathrm e}^{-x^{2}}-8} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
18.913 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2} \cos \left (x \right )+2 x^{3} \sin \left (x \right )-2 x \sin \left (x \right )+2 x +2 y^{2} x^{2}-4 x \sin \left (x \right ) y+4 y \cos \left (x \right ) x^{2}+4 y x +3-\cos \left (2 x \right )-2 \sin \left (2 x \right ) x -4 \sin \left (x \right )+\cos \left (2 x \right ) x^{2}+x^{2}+4 \cos \left (x \right ) x}{2 x^{3}} \\
\end{align*} | [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] | ✓ | ✓ | ✓ | ✗ | 12.945 |
|
| \begin{align*}
y^{\prime }&=-\frac {216 y}{-216 y^{4}-252 y^{3}-396 y^{2}-216 y+36 x^{2}-72 y x +60 y^{5}-36 x y^{3}-72 x y^{2}-24 y^{4} x +4 y^{8}+12 y^{7}+33 y^{6}} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
12.977 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} y+x^{4}+2 x^{3}-3 x^{2}+y x +x +y^{3}+3 y^{2} x^{2}-3 x y^{2}+3 x^{4} y-6 x^{3} y+x^{6}-3 x^{5}}{x \left (y+x^{2}-x +1\right )} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
13.311 |
|
| \begin{align*}
y^{\prime }&=-\frac {a x}{2}+1+y^{2}+\frac {a \,x^{2} y}{2}+b x y+\frac {a^{2} x^{4}}{16}+\frac {a \,x^{3} b}{4}+\frac {b^{2} x^{2}}{4}+y^{3}+\frac {3 a \,x^{2} y^{2}}{4}+\frac {3 b x y^{2}}{2}+\frac {3 a^{2} x^{4} y}{16}+\frac {3 y a \,x^{3} b}{4}+\frac {3 b^{2} x^{2} y}{4}+\frac {a^{3} x^{6}}{64}+\frac {3 a^{2} x^{5} b}{32}+\frac {3 a \,x^{4} b^{2}}{16}+\frac {b^{3} x^{3}}{8} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.408 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{2}+1+y^{2}+\frac {x^{2} y}{2}+a x y+\frac {x^{4}}{16}+\frac {a \,x^{3}}{4}+\frac {a^{2} x^{2}}{4}+y^{3}+\frac {3 y^{2} x^{2}}{4}+\frac {3 a x y^{2}}{2}+\frac {3 x^{4} y}{16}+\frac {3 y a \,x^{3}}{4}+\frac {3 y a^{2} x^{2}}{4}+\frac {x^{6}}{64}+\frac {3 x^{5} a}{32}+\frac {3 a^{2} x^{4}}{16}+\frac {a^{3} x^{3}}{8} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.365 |
|
| \begin{align*}
y^{\prime }&=-\frac {-y+x^{2} \sqrt {y^{2}+x^{2}}-x \sqrt {y^{2}+x^{2}}\, y+x^{4} \sqrt {y^{2}+x^{2}}-x^{3} \sqrt {y^{2}+x^{2}}\, y+x^{5} \sqrt {y^{2}+x^{2}}-x^{4} \sqrt {y^{2}+x^{2}}\, y}{x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✗ |
✓ |
✓ |
✗ |
17.677 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x} \\
\end{align*} |
[NONE] |
✗ |
✓ |
✓ |
✗ |
19.293 |
|
| \begin{align*}
y^{\prime }&=\frac {150 x^{3}+125 \sqrt {x}+125+125 y^{2}-100 x^{3} y-500 \sqrt {x}\, y+20 x^{6}+200 x^{{7}/{2}}+500 x +125 y^{3}-150 x^{3} y^{2}-750 y^{2} \sqrt {x}+60 x^{6} y+600 y x^{{7}/{2}}+1500 y x -8 x^{9}-120 x^{{13}/{2}}-600 x^{4}-1000 x^{{3}/{2}}}{125 x} \\
\end{align*} |
[_rational, _Abel] |
✓ |
✓ |
✓ |
✗ |
13.138 |
|
| \begin{align*}
y^{\prime }&=\frac {-150 x^{3} y+60 x^{6}+350 x^{{7}/{2}}-150 x^{3}-125 \sqrt {x}\, y+250 x -125 \sqrt {x}-125 y^{3}+150 x^{3} y^{2}+750 y^{2} \sqrt {x}-60 x^{6} y-600 y x^{{7}/{2}}-1500 y x +8 x^{9}+120 x^{{13}/{2}}+600 x^{4}+1000 x^{{3}/{2}}}{25 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
20.849 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-1-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2}-x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y+2 x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )+x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} x^{2} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\
\end{align*} |
[_Bernoulli] |
✗ |
✓ |
✓ |
✓ |
22.852 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (-1-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}}-x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y+2 x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )+x^{3} x^{\frac {2}{1+\ln \left (x \right )}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{1+\ln \left (x \right )}} y \ln \left (x \right )^{2}\right )}{\left (1+\ln \left (x \right )\right ) x} \\
\end{align*} |
[_Bernoulli] |
✗ |
✓ |
✓ |
✓ |
21.558 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +4 y \ln \left (2 x +1\right ) x +6 y^{2} \ln \left (2 x +1\right ) x +6 y \ln \left (2 x +1\right )^{2} x +2 \ln \left (2 x +1\right )^{3} x +2 x y^{3}+2 \ln \left (2 x +1\right )^{2} x +2 x y^{2}-1+3 y^{2} \ln \left (2 x +1\right )+3 y \ln \left (2 x +1\right )^{2}+y^{2}+y^{3}+2 y \ln \left (2 x +1\right )+\ln \left (2 x +1\right )^{2}+\ln \left (2 x +1\right )^{3}}{2 x +1} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.328 |
|
| \begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
13.081 |
|
| \begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
15.133 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x +x^{2}+{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}}{y^{2}+2 y x +x^{2}-{\mathrm e}^{2+2 y^{4}-4 y^{2} x^{2}+2 x^{4}+2 y^{6}-6 x^{2} y^{4}+6 x^{4} y^{2}-2 x^{6}}} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
12.458 |
|
| \begin{align*}
y^{\prime }&=\frac {4 x \left (a -1\right ) \left (a +1\right ) \left (-y^{2}+a^{2} x^{2}-x^{2}-2\right )}{-4 y^{3}+4 y a^{2} x^{2}-4 x^{2} y-8 y-y^{6} a^{2}+3 a^{4} y^{4} x^{2}-6 y^{4} a^{2} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-4 a^{2} x^{6}+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
7.486 |
|
| \begin{align*}
y^{\prime }&=\frac {-4 \cos \left (x \right ) x +4 x^{2} \sin \left (x \right )+4 x +4+4 y^{2}+8 y \cos \left (x \right ) x -8 y x +2 \cos \left (2 x \right ) x^{2}+6 x^{2}-8 x^{2} \cos \left (x \right )+4 y^{3}+12 y^{2} \cos \left (x \right ) x -12 x y^{2}+6 y x^{2} \cos \left (2 x \right )+18 x^{2} y-24 y \cos \left (x \right ) x^{2}+x^{3} \cos \left (3 x \right )+15 \cos \left (x \right ) x^{3}-6 x^{3} \cos \left (2 x \right )-10 x^{3}}{4 x} \\
\end{align*} | [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] | ✓ | ✓ | ✓ | ✗ | 13.539 |
|
| \begin{align*}
y^{\prime }&=-\frac {8 x \left (a -1\right ) \left (a +1\right )}{8+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}-8 y+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-8 a^{2}+2 x^{4}+2 y^{4}+x^{6}+4 y^{2} x^{2}-9 y^{2} a^{2} x^{4}+4 a^{4} y^{2} x^{2}-6 a^{2} x^{4}-2 a^{6} x^{4}+6 a^{4} x^{4}-8 y^{2} a^{2} x^{2}-4 a^{2} x^{6}-y^{6} a^{2}+3 a^{4} y^{4} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-2 y^{4} a^{2}-6 y^{4} a^{2} x^{2}} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
8.235 |
|
| \begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
11.388 |
|
| \begin{align*}
y^{\prime }&=-\frac {1296 y}{216-648 x^{2} y+216 x^{2}-432 y x -882 y^{6}-216 x^{2} y^{4}-1296 y+216 x y^{2}-1944 y^{4}+1080 x y^{3}-570 y^{8}-648 y^{2} x^{2}+216 y^{7} x -1728 y^{3}+72 y^{8} x +216 x^{3}-2376 y^{2}-612 y^{5}-324 x^{2} y^{3}+594 x y^{6}+1080 x y^{5}+1152 y^{4} x -846 y^{7}-126 y^{10}-8 y^{12}-36 y^{11}-315 y^{9}} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
12.604 |
|
| \begin{align*}
y^{\prime }&=-\frac {x \left (-513-432 x -576 x^{5}-594 x^{2} y-1134 x^{2}-972 x^{4} y^{2}-378 y+864 x^{5} y^{2}-864 x^{4}-216 x^{4} y-456 x^{6}+288 x^{7} y-144 x^{7}+720 x^{3} y-96 x^{8}-1296 y^{2} x^{2}-216 y^{3}-288 x^{6} y-216 x^{6} y^{3}-288 y x^{8}-756 x^{3}+432 x^{3} y^{2}-540 y^{2}-648 x^{2} y^{3}+1008 x^{5} y+64 x^{9}-648 y^{3} x^{4}-216 x^{6} y^{2}+432 y^{2} x^{7}\right )}{216 \left (x^{2}+1\right )^{4}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
8.628 |
|
| \begin{align*}
y^{\prime }&=\frac {-\sin \left (\frac {y}{x}\right ) y x -\sin \left (\frac {y}{x}\right ) y+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )} \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
13.039 |
|
| \begin{align*}
y^{\prime }&=\frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -\sin \left (\frac {y}{x}\right ) y+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \\
\end{align*} |
[[_homogeneous, ‘class D‘]] |
✓ |
✓ |
✓ |
✗ |
18.151 |
|
| \begin{align*}
y^{\prime }&=-\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{-648 x^{2} y-1296 y x +2484 y^{6}-216 x^{2} y^{4}-1296 y-1944 x y^{2}+2808 y^{4}-648 x y^{3}-18 y^{8}-648 y^{2} x^{2}+216 y^{7} x +1728 y^{3}+72 y^{8} x +216 x^{3}-1296 y^{2}+4428 y^{5}-324 x^{2} y^{3}+594 x y^{6}+1080 x y^{5}-432 y^{4} x +594 y^{7}-126 y^{10}-8 y^{12}-36 y^{11}-315 y^{9}} \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
23.492 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (y x +1\right )^{3}}{x^{5}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
35.019 |
|
| \begin{align*}
y^{\prime }&=\frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{y-x^{2}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.589 |
|
| \begin{align*}
y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{b x}+{\mathrm e}^{2 b x}\right ) {\mathrm e}^{-2 b x} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✓ |
10.626 |
|
| \begin{align*}
y^{\prime }&=y^{3}-3 y^{2} x^{2}+3 x^{4} y-x^{6}+2 x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✓ |
7.892 |
|
| \begin{align*}
y^{\prime }&=y^{3}+y^{2} x^{2}+\frac {x^{4} y}{3}+\frac {x^{6}}{27}-\frac {2 x}{3} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Abel] |
✓ |
✓ |
✓ |
✓ |
8.181 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y^{2} x^{7}+x^{4} y+x -3\right )}{x} \\
\end{align*} |
[_rational, _Abel] |
✓ |
✓ |
✓ |
✓ |
15.837 |
|
| \begin{align*}
y^{\prime }&=y \left (y^{2}+y \,{\mathrm e}^{-x^{2}}+{\mathrm e}^{-2 x^{2}}\right ) {\mathrm e}^{2 x^{2}} x \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
15.355 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y^{2}+y x +x^{2}+x \right )}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Abel] |
✓ |
✓ |
✓ |
✗ |
13.324 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x}{x} \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _rational, _Abel] | ✓ | ✓ | ✓ | ✓ | 10.452 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3} y^{3}+6 y^{2} x^{2}+12 y x +8+2 x}{x^{3}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
9.788 |
|
| \begin{align*}
y^{\prime }&=\frac {a^{3} x^{3} y^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
10.708 |
|
| \begin{align*}
y^{\prime }&=\frac {y \,{\mathrm e}^{-\frac {x^{2}}{2}} \left (2 y^{2}+2 y \,{\mathrm e}^{\frac {x^{2}}{4}}+2 \,{\mathrm e}^{\frac {x^{2}}{2}}+x \,{\mathrm e}^{\frac {x^{2}}{2}}\right )}{2} \\
\end{align*} |
[_Abel] |
✓ |
✓ |
✓ |
✗ |
66.949 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2}+3 x^{2} y-x^{3}+x^{2}}{\left (x -1\right ) \left (x +1\right )} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
16.802 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y^{2} x^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
✗ |
✓ |
✓ |
✗ |
25.181 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (y x +1\right ) \left (y^{2} x^{2}+x^{2} y+2 y x +1+x +x^{2}\right )}{x^{5}} \\
\end{align*} |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
8.763 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-3 x y^{2} \ln \left (x \right )+3 x^{2} \ln \left (x \right )^{2} y-x^{3} \ln \left (x \right )^{3}+x^{2}+y x}{x^{2}} \\
\end{align*} |
[_Abel] |
✓ |
✓ |
✓ |
✗ |
8.497 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
8.538 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (y^{2}-2 y x -x^{2}\right )+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
10.454 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
10.156 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-y^{2}+2 x^{2} y+1-x^{4}\right )+2 x \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
17.290 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
8.858 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
6.974 |
|
| \begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
18.736 |
|
| \begin{align*}
y^{\prime }&=-x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
13.730 |
|
| \begin{align*}
y^{\prime }&=\left (-{\mathrm e}^{x}+y\right )^{2}+{\mathrm e}^{x} \\
\end{align*} | [[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] | ✓ | ✓ | ✓ | ✓ | 14.172 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
14.185 |
|
| \begin{align*}
y^{\prime }&=\left (\cos \left (x \right )+y\right )^{2}+\sin \left (x \right ) \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
70.760 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.405 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2} y+x^{3}+x y \ln \left (x \right )-y^{2}-y x}{x^{2} \left (\ln \left (x \right )+x \right )} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
11.231 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.470 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.415 |
|
| \begin{align*}
y^{\prime \prime }+y-\sin \left (n x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| \begin{align*}
y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.467 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.482 |
|
| \begin{align*}
y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y-\cot \left (a x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.295 |
|
| \begin{align*}
y^{\prime \prime }+l y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.053 |
|
| \begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.198 |
|
| \begin{align*}
y^{\prime \prime }-\left (x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.538 |
|
| \begin{align*}
y^{\prime \prime }-\left (x^{2}+a \right ) y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 1.204 |
|
| \begin{align*}
y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.644 |
|
| \begin{align*}
y^{\prime \prime }-c \,x^{a} y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.446 |
|
| \begin{align*}
y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y&=0 \\
\end{align*} |
[_Titchmarsh] |
✗ |
✗ |
✗ |
✗ |
1.997 |
|
| \begin{align*}
y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.334 |
|
| \begin{align*}
y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.474 |
|
| \begin{align*}
a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.212 |
|
| \begin{align*}
y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.977 |
|
| \begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.337 |
|